These problems are designed to show two methods (completely different from the one used in class) to show that
\[\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}. \]

However, we will actually show that
\[\int_{0}^{\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}. \]

Why are these two equations equivalent?

The following facts will be useful in doing some of these problems.

- If \(F(x) = \int_{a}^{b} G(x, y) \, dy \), then \(F'(x) = \int_{a}^{b} G_x(x, y) \, dy \). This is called differentiating under the integral sign.
- If \(n \) is any positive integer, then
 \[\lim_{x \to \infty} \frac{x^n}{e^x} = 0. \]
- John Wallis’s product for \(\pi \):
 \[\frac{\pi}{2} = \lim_{n \to \infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{2n}{2n-1} \cdot \frac{2n}{2n+1}. \]

In order to write this more succinctly, we use the notation \(n!! \) to represent the product of every other positive integer less than or equal to \(n \). In other words, \(6!! = 6 \cdot 4 \cdot 2 \), and \(7!! = 7 \cdot 5 \cdot 3 \cdot 1 \). (For simplicity, set \(0!! = 1 \) and \(1!! = 1 \).) Using this notation, we can write the above formula as
\[\frac{\pi}{2} = \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!!(2n+1)!!} = \lim_{n \to \infty} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{2n+1}. \]

- If \(At^2 + Bt + C \) is a polynomial that is positive for every value of \(t \), then \(B^2 - 4AC < 0 \).

Method 1

Let
\[f(x) = \left(\int_{0}^{x} e^{-t^2} \, dt \right)^2 \]
and
\[g(x) = \int_{0}^{1} e^{-x^2(1+u^2)} \, du. \]

Notice that \(\lim_{x \to \infty} f(x) \) is related to the integral that we are trying to compute.

Let \(h(x) = f(x) + g(x) \).

1. Compute \(f(0) \).
2. Show that \(g(0) = \pi/4 \).
3. Compute $h(0)$.

4. Compute $f'(x)$.

5. Compute $g'(x)$ by differentiating under the integral sign.

6. Make some substitutions to show that $f'(x) + g'(x) = 0$.

7. Show that $h(x)$ is a constant.

8. What is $\lim_{x \to \infty} h(x)$?

9. Show that $\lim_{x \to \infty} g(x) = 0$.

10. Show that $\lim_{x \to \infty} f(x) = \pi/4$.

11. Show that

$$\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}.$$

Method 2

If n is a positive integer, define

$$I_n = \int_{0}^{\infty} x^n e^{-x^2} dx.$$

Notice that I_0 is related to the integral that we are trying to compute.

12. Show that $I_1 = \frac{1}{2}$.

13. Use integration by parts to show that $I_n = \frac{n-1}{2} I_{n-2}$.

14. Using the previous problem, show that

$$I_{2n+1} = \frac{(2n)!!}{2^n} \cdot \frac{1}{2}.$$

15. Similarly, show that

$$I_{2n} = \frac{(2n-1)!!}{2^n} I_0.$$

16. Now, we need to relate I_n and I_{n+1}. Let t be a variable, and define the function

$$F_n(t) = \int_{0}^{\infty} (x + t)^2 x^n e^{-x^2} dx.$$

Using only the definition of $F_n(t)$, show that $F_n(t) > 0$ for any value of t.

17. Show that $F_n(t) = t^2 I_n + 2t I_{n+1} + I_{n+2}$.
18. Using the fact that \(F_n(t) > 0 \), show that \(I_{n+1}^2 < I_n I_{n+2} \). This is almost the relationship that we need, but it must be re-written. Use an earlier problem to show that

\[
I_{n+1}^2 < \frac{n+1}{2} I_n^2.
\]

19. The previous problem shows that

\[
I_{2n}^2 < n I_{2n-1}^2.
\]

We can now plug in the values for \(I_{2n} \) and \(I_{2n-1} \) from above, and get the inequality

\[
\left(\frac{(2n-1)!!}{2^n} I_0 \right)^2 < n \left(\frac{(2n-2)!!}{2^{n-1}} \cdot \frac{1}{2} \right)^2.
\]

Simplify this to get the inequality

\[
I_0^2 < \left(\frac{(2n-2)!!}{(2n-1)!!} \right)^2 n = \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{(2n+1)} \cdot \frac{n(2n+1)}{(2n)^2}.
\]

Now take a limit as \(n \to \infty \), and conclude that

\[
I_0^2 \leq \lim_{n \to \infty} \left[\left(\frac{(2n)!!}{(2n-1)!!} \right)^2 \cdot \frac{1}{(2n+1)} \cdot \frac{n(2n+1)}{(2n)^2} \right] = \pi \cdot \frac{1}{2} = \frac{\pi}{4}.
\]

Therefore, \(I_0 \leq \sqrt{\pi}/2 \).

20. We can also write

\[
I_{2n+1}^2 < \frac{2n+1}{2} I_{2n}^2.
\]

Now, we substitute in the values that we have for \(I_{2n+1} \) and \(I_{2n} \), and we get the inequality.

\[
\left(\frac{(2n)!!}{2^n} \right)^2 1 \cdot \frac{1}{4} < \frac{2n+1}{2} \left(\frac{(2n-1)!!}{2^n} \right)^2 I_0^2.
\]

Rearrange this to get

\[
\frac{(2n)!!^2}{((2n-1)!!)^2(2n+1)} \cdot \frac{1}{2} < I_0^2.
\]

Now, take a limit as \(n \to \infty \), and we get

\[
\lim_{n \to \infty} \frac{(2n)!!^2}{((2n-1)!!)^2(2n+1)} \cdot \frac{1}{2} \leq I_0^2.
\]

Therefore, \(I_0 = \sqrt{\pi}/2 \).