1. (15 points) Finish this definition:
 When we say that a set of vectors \(\{x_1, x_2, \ldots, x_n\} \) is linearly independent, we mean that...

 Answer: ...the only solution to the equation \(a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0 \) is the trivial solution \(a_1 = a_2 = \cdots = a_n = 0 \).

2. (20 points) (a) Let
 \[
 A = \begin{bmatrix}
 2 & 1 & 3 & -2 \\
 2 & 1 & 5 & 2 \\
 1 & 1 & 1 & 1
 \end{bmatrix}
 \]
 What is the reduced row echelon matrix to which \(A \) is row equivalent?

 Answer: Using elementary matrices to indicate the row operations (to save space), and starting by switching the first and third rows to save time, we have

 \[
 \begin{bmatrix}
 2 & 1 & 3 & -2 \\
 2 & 1 & 5 & 2 \\
 1 & 1 & 1 & 1
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & 1 & 1 \\
 -2 & 1 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 0 & -1 & 3 & 0 \\
 0 & -1 & 1 & -4
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 \\
 1 & -3 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -1 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 0 & -7 \\
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 & 2
 \end{bmatrix}
 .

 This last matrix is the (unique) reduced row echelon matrix row-equivalent to \(A \).

 Because there is a pivot in every row of \(A \), we know that the linear transformation \(T \) is surjective. Because there is not a pivot in every column of \(A \), we know that the linear transformation \(T \) is not injective.

3. (10 points) Let
 \[
 A = \begin{bmatrix}
 0 & 3 & 0 & 2 \\
 0 & 1 & 0 & 1 \\
 1 & 2 & 0 & 4
 \end{bmatrix}
 \]
 Are the columns of \(A \) linearly independent vectors?

 Answer: You do not need to do any work to answer this question. Because the third column of \(A \) is the 0-vector, we know that the columns of \(A \) are not linearly independent vectors.

4. (20 points) Suppose that the set \(\{u, v\} \) contains 2 linearly independent vectors. Show that the set \(\{u + v, u - v\} \) also contains 2 linearly independent vectors.
Answer: We write down the equation $a(u + v) + b(u - v) = 0$. We need to show that the only solution to this equation is the trivial solution $a = b = 0$. Simplifying, we get the equation $(a + b)u + (a - b)v = 0$. Because u and v are linearly independent, we know that the only solution to this equation is the trivial solution $a + b = a - b = 0$. The only solution to that pair of equations is $a = b = 0$, so we can conclude that the set $\{u + v, u - v\}$ contains 2 linearly independent vectors.

5. (20 points) Consider this homogeneous system of equations:

\[
\begin{align*}
3x_1 - 2x_2 - x_3 - 4x_4 &= 0 \\
x_1 + x_2 - 2x_3 - 3x_4 &= 0
\end{align*}
\]

Find vectors $u, v \in \mathbb{R}^4$ so that the solution can be written in the form

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = au + bv
\]

where a and b are arbitrary real numbers.

Answer: Again, we proceed by row reduction to reduced echelon form, and again it is much simpler to reverse the order of the rows before doing anything more:

\[
\begin{bmatrix}
3 & -2 & -1 & -4 \\
1 & 1 & -2 & -3
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & -2 & -3 \\
3 & -2 & -1 & -4
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 \\
-3 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & -2 & -3 \\
0 & 5 & 5 & 0
\end{bmatrix}
\]

We can conclude that $x_1 - x_3 - 2x_4 = 0$, or $x_1 = x_3 + 2x_4$, and that $x_2 - x_3 - x_4 = 0$, or that $x_2 = x_3 + x_4$. Therefore,

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
x_3 + 2x_4 \\
x_3 + x_4 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
1 \\
x_3 \\
1 \\
x_4
\end{bmatrix} +
\begin{bmatrix}
x_3 \\
1 \\
0 \\
2
\end{bmatrix}
\]

Among many possible answers, one is $u = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

6. (15 points) Let u and v be vectors in \mathbb{R}^n. Suppose that $w = 2u - 3v$. Show that the span of the set $\{u, v\}$ is the same as the span of the set $\{u, v, w\}$.

Answer: Any vector x in the span of $\{u, v\}$ can be definition be written in the form $x = au + bv$. Because this is the same as $x = au + bv + 0w$, we can conclude that x is in the span of $\{u, v, w\}$.

Suppose on the other hand that x is in the span of $\{u, v, w\}$. This means that we can write $x = au + bv + cw$. Substitute $w = 2u - 3v$, and we get $x = au + bv + c(2u - 3v) = a_2c)u + (b - 3c)v$. This shows that x is in the span of $\{u, v\}$.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>65</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

Mean: 64.72
Standard deviation: 13.84