Mathematics 210 Homework 4 Answers

1. Let
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$, and $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$. Verify that $AB = AC$, even though $B \neq C$.

Answer: We have $\begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -2 & 14 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$.

2. Suppose that A, B, and C are all $n \times n$ matrices. Suppose also that AB = AC, but $B \neq C$. Prove that A is not invertible.

Answer: Suppose that AB = AC and A is invertible. Then multiplying both sides of AB = AC on the left by A^{-1} , we have

$$AB = AC$$

$$A^{-1}(AB) = A^{-1}(AC)$$

$$(A^{-1}A)B = (A^{-1}A)C$$

$$B = C$$

This is a contradiction, so we can conclude that A is not invertible.

3. Find a 2×3 matrix A and a 3×2 matrix B so that $AB = I_2$. Verify that $BA \neq I_3$.

Answer: Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, but $BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

4. Suppose that A is an $n \times m$ matrix and B an $m \times n$ matrix, and that AB = I. Let $T_A : \mathbf{R}^m \to \mathbf{R}^n$ be defined by $T_A(\mathbf{x}) = A\mathbf{x}$. Show that T_A is a surjective linear transformation by showing that the equation $A\mathbf{x} = \mathbf{b}$ can be solved for any vector \mathbf{b} .

Answer: Given any vector **b**, we see that $T_A(B\mathbf{b}) = A(B\mathbf{b}) = (AB)\mathbf{b} = I\mathbf{b} = \mathbf{b}$, so the equation $T_A(\mathbf{x}) = \mathbf{b}$ is always solvable.

5. (continued) Let $T_B : \mathbf{R}^n \to \mathbf{R}^m$ be defined by $T_B(\mathbf{y}) = B\mathbf{y}$. Show that T_B is an injective linear transformation by showing that the equation $B\mathbf{y} = \mathbf{0}$ has only the trivial solution $\mathbf{y} = \mathbf{0}$.

Answer: Suppose that $B\mathbf{y} = \mathbf{0}$. Multiply both sides of the equation by A:

$$B\mathbf{y} = \mathbf{0}$$

$$A(B\mathbf{y}) = A\mathbf{0} = \mathbf{0}$$

$$(AB)\mathbf{y} = \mathbf{0}$$

$$\mathbf{y} = \mathbf{0}$$

6. Let

$$A = \begin{bmatrix} 2 & 0 & 3 \\ 4 & 3 & -1 \\ 8 & 9 & 2 \end{bmatrix}.$$

Use row reduction to compute A^{-1} .

Answer: We write I_3 next to the matrix A, and row reduce.

$$\begin{bmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 4 & 3 & -1 & 0 & 1 & 0 \\ 8 & 9 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 4 & 3 & -1 & 0 & 1 & 0 \\ 8 & 9 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -8 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 3 & -7 & -2 & 1 & 0 \\ 0 & 9 & -10 & -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{7}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 9 & -10 & -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 9 & -10 & -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -9 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{1}{0} & 0 \\ 0 & 0 & \frac{1}{11} \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & -\frac{7}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1 & \frac{2}{11} & -\frac{3}{31} & \frac{1}{11} \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 1 & \frac{2}{11} & -\frac{3}{11} & \frac{1}{11} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{5}{22} & \frac{9}{22} & -\frac{3}{22} \\ 0 & 1 & 0 & -\frac{8}{33} & -\frac{10}{10} & \frac{7}{33} \\ 0 & 0 & 1 & \frac{2}{11} & -\frac{3}{11} & \frac{1}{11} \end{bmatrix}$$

Therefore,
$$A^{-1} = \begin{bmatrix} \frac{5}{22} & \frac{9}{22} & -\frac{3}{22} \\ -\frac{8}{33} & -\frac{10}{33} & \frac{7}{33} \\ \frac{2}{11} & -\frac{3}{11} & \frac{1}{11} \end{bmatrix}$$
.

7. Suppose that A is a 2×2 matrix, that $A \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 17 \\ 20 \end{bmatrix}$, and that $A \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 22 \\ 22 \end{bmatrix}$. Find the matrix A.

Answer: Those two equations amount to the equation $A\begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 17 & 22 \\ 20 & 22 \end{bmatrix}$. This means that $A = \begin{bmatrix} 17 & 22 \\ 20 & 22 \end{bmatrix}$.

$$\begin{bmatrix} 17 & 22 \\ 20 & 22 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 17 & 22 \\ 20 & 22 \end{bmatrix} \left(\frac{1}{3}\right) \begin{bmatrix} 2 & -3 \\ -1 & 3 \end{bmatrix} = \left(\frac{1}{3}\right) \begin{bmatrix} 17 & 22 \\ 20 & 22 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 3 \end{bmatrix} = \left(\frac{1}{3}\right) \begin{bmatrix} 12 & 15 \\ 18 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 6 & 2 \end{bmatrix}.$$
 Therefore, $A = \begin{bmatrix} 4 & 5 \\ 6 & 2 \end{bmatrix}$.

8. Suppose that A and B are 2×2 matrices, that $AB = \begin{bmatrix} 2 & 11 \\ 4 & 5 \end{bmatrix}$, and that $B = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$. Find A. Answer: We have $A = (AB)B^{-1} = \begin{bmatrix} 2 & 11 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -41 & 25 \\ 3 & -1 \end{bmatrix}$.

9. Let
$$A = \begin{bmatrix} 3 & 4 & 5 & 2 \\ 1 & 3 & 2 & 3 \\ 3 & 2 & 1 & 9 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 6 & 3 \\ 2 & 4 \\ 8 & 3 \\ 1 & 7 \end{bmatrix}$. What is AB ?

Answer: We have $AB = \begin{bmatrix} 68 & 54 \\ 31 & 42 \\ 39 & 83 \end{bmatrix}$.

10. Find a 2×2 matrix A, which does not contain the number 0 in any of its 4 positions, so that A^2 is a matrix containing 4 zeroes.

Answer: If A^2 contains only zeroes, then A^2 is not invertible, and therefore A cannot be invertible. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, this means that ad - bc = 0, or ad = bc. We can try setting a = 1 and seeing what happens.

This means that $A = \begin{bmatrix} 1 & b \\ c & bc \end{bmatrix}$. We compute that $A^2 = \begin{bmatrix} 1+bc & b+b^2c \\ c+bc^2 & bc+b^2c^2 \end{bmatrix} = \begin{bmatrix} 1+bc & b(1+bc) \\ c(1+bc) & bc(1+bc) \end{bmatrix}$. We now set bc = -1 (so that 1+bc = 0), and miraculously this equation makes all 4 of the matrix entries equal to 0. So we can try taking b = 1 and c = -1, and setting $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. Sure enough, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.