Mathematics 210
Homework 4
Answers

1. Let $A=\left[\begin{array}{rr}2 & -3 \\ -4 & 6\end{array}\right], B=\left[\begin{array}{ll}8 & 4 \\ 5 & 5\end{array}\right]$, and $C=\left[\begin{array}{rr}5 & -2 \\ 3 & 1\end{array}\right]$. Verify that $A B=A C$, even though $B \neq C$.

Answer: We have $\left[\begin{array}{rr}2 & -3 \\ -4 & 6\end{array}\right]\left[\begin{array}{ll}8 & 4 \\ 5 & 5\end{array}\right]=\left[\begin{array}{rr}1 & -7 \\ -2 & 14\end{array}\right]=\left[\begin{array}{rr}2 & -3 \\ -4 & 6\end{array}\right]\left[\begin{array}{rr}5 & -2 \\ 3 & 1\end{array}\right]$.
2. Suppose that $A, B$, and $C$ are all $n \times n$ matrices. Suppose also that $A B=A C$, but $B \neq C$. Prove that $A$ is not invertible.
Answer: Suppose that $A B=A C$ and $A$ is invertible. Then multiplying both sides of $A B=A C$ on the left by $A^{-1}$, we have

$$
\begin{aligned}
A B & =A C \\
A^{-1}(A B) & =A^{-1}(A C) \\
\left(A^{-1} A\right) B & =\left(A^{-1} A\right) C \\
B & =C
\end{aligned}
$$

This is a contradiction, so we can conclude that $A$ is not invertible.
3. Find a $2 \times 3$ matrix $A$ and a $3 \times 2$ matrix $B$ so that $A B=I_{2}$. Verify that $B A \neq I_{3}$.

Answer: Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. Then $A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, but $B A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
4. Suppose that $A$ is an $n \times m$ matrix and $B$ an $m \times n$ matrix, and that $A B=I$. Let $T_{A}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ be defined by $T_{A}(\mathbf{x})=A \mathbf{x}$. Show that $T_{A}$ is a surjective linear transformation by showing that the equation $A \mathbf{x}=\mathbf{b}$ can be solved for any vector $\mathbf{b}$.
Answer: Given any vector $\mathbf{b}$, we see that $T_{A}(B \mathbf{b})=A(B \mathbf{b})=(A B) \mathbf{b}=I \mathbf{b}=\mathbf{b}$, so the equation $T_{A}(\mathbf{x})=\mathbf{b}$ is always solvable.
5. (continued) Let $T_{B}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be defined by $T_{B}(\mathbf{y})=B \mathbf{y}$. Show that $T_{B}$ is an injective linear transformation by showing that the equation $B \mathbf{y}=\mathbf{0}$ has only the trivial solution $\mathbf{y}=\mathbf{0}$.
Answer: Suppose that $B \mathbf{y}=\mathbf{0}$. Multiply both sides of the equation by $A$ :

$$
\begin{aligned}
B \mathbf{y} & =\mathbf{0} \\
A(B \mathbf{y}) & =A \mathbf{0}=\mathbf{0} \\
(A B) \mathbf{y} & =\mathbf{0} \\
\mathbf{y} & =\mathbf{0}
\end{aligned}
$$

6. Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 3 \\
4 & 3 & -1 \\
8 & 9 & 2
\end{array}\right]
$$

Use row reduction to compute $A^{-1}$.
Answer: We write $I_{3}$ next to the matrix $A$, and row reduce.

$$
\left[\begin{array}{rrrrrr}
2 & 0 & 3 & 1 & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
8 & 9 & 2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
4 & 3 & -1 & 0 & 1 & 0 \\
8 & 9 & 2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
-8 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 3 & -7 & -2 & 1 & 0 \\
0 & 9 & -10 & -4 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{7}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 9 & -10 & -4 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -9 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrrr}
1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{7}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 0 & 11 & 2 & -3 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{11}
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{7}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1 & \frac{2}{11} & -\frac{3}{11} & \frac{1}{11}
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -\frac{3}{2} \\
0 & 1 & \frac{7}{3} \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrrc}
1 & 0 & 0 & \frac{5}{22} & \frac{9}{22} & -\frac{3}{22} \\
0 & 1 & 0 & -\frac{8}{33} & -\frac{10}{33} & \frac{7}{33} \\
0 & 0 & 1 & \frac{2}{11} & -\frac{3}{11} & \frac{1}{11}
\end{array}\right]}
\end{aligned}
$$

Therefore, $A^{-1}=\left[\begin{array}{rrr}\frac{5}{22} & \frac{9}{22} & -\frac{3}{22} \\ -\frac{8}{33} & -\frac{10}{33} & \frac{7}{33} \\ \frac{2}{11} & -\frac{3}{11} & \frac{1}{11}\end{array}\right]$.
7. Suppose that $A$ is a $2 \times 2$ matrix, that $A\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}17 \\ 20\end{array}\right]$, and that $A\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}22 \\ 22\end{array}\right]$. Find the matrix $A$.

Answer: Those two equations amount to the equation $A\left[\begin{array}{ll}3 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}17 & 22 \\ 20 & 22\end{array}\right]$. This means that $A=$ $\left[\begin{array}{ll}17 & 22 \\ 20 & 22\end{array}\right]\left[\begin{array}{ll}3 & 3 \\ 1 & 2\end{array}\right]^{-1}=\left[\begin{array}{ll}17 & 22 \\ 20 & 22\end{array}\right]\left(\frac{1}{3}\right)\left[\begin{array}{rr}2 & -3 \\ -1 & 3\end{array}\right]=\left(\frac{1}{3}\right)\left[\begin{array}{rr}17 & 22 \\ 20 & 22\end{array}\right]\left[\begin{array}{rr}2 & -3 \\ -1 & 3\end{array}\right]=\left(\frac{1}{3}\right)\left[\begin{array}{rr}12 & 15 \\ 18 & 6\end{array}\right]=$ $\left[\begin{array}{ll}4 & 5 \\ 6 & 2\end{array}\right]$. Therefore, $A=\left[\begin{array}{ll}4 & 5 \\ 6 & 2\end{array}\right]$.
8. Suppose that $A$ and $B$ are $2 \times 2$ matrices, that $A B=\left[\begin{array}{rr}2 & 11 \\ 4 & 5\end{array}\right]$, and that $B=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$. Find $A$.

Answer: We have $A=(A B) B^{-1}=\left[\begin{array}{rr}2 & 11 \\ 4 & 5\end{array}\right]\left[\begin{array}{rr}7 & -4 \\ -5 & 3\end{array}\right]=\left[\begin{array}{rr}-41 & 25 \\ 3 & -1\end{array}\right]$.
9. Let $A=\left[\begin{array}{llll}3 & 4 & 5 & 2 \\ 1 & 3 & 2 & 3 \\ 3 & 2 & 1 & 9\end{array}\right]$ and let $B=\left[\begin{array}{ll}6 & 3 \\ 2 & 4 \\ 8 & 3 \\ 1 & 7\end{array}\right]$. What is $A B$ ?

Answer: We have $A B=\left[\begin{array}{ll}68 & 54 \\ 31 & 42 \\ 39 & 83\end{array}\right]$.
10. Find a $2 \times 2$ matrix $A$, which does not contain the number 0 in any of its 4 positions, so that $A^{2}$ is a matrix containing 4 zeroes.
Answer: If $A^{2}$ contains only zeroes, then $A^{2}$ is not invertible, and therefore $A$ cannot be invertible. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, this means that $a d-b c=0$, or $a d=b c$. We can try setting $a=1$ and seeing what happens. This means that $A=\left[\begin{array}{cc}1 & b \\ c & b c\end{array}\right]$. We compute that $A^{2}=\left[\begin{array}{cc}1+b c & b+b^{2} c \\ c+b c^{2} & b c+b^{2} c^{2}\end{array}\right]=\left[\begin{array}{cc}1+b c & b(1+b c) \\ c(1+b c) & b c(1+b c)\end{array}\right]$. We now set $b c=-1$ (so that $1+b c=0$ ), and miraculously this equation makes all 4 of the matrix entries equal to 0 . So we can try taking $b=1$ and $c=-1$, and setting $A=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$. Sure enough, $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

