1. Let \(H_1 = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4 : a + b + c = 0, a - b + c = 0, b + 2c = 0 \right\} \). Find a basis for \(H_1 \) and find the dimension of \(H_1 \).

2. Let \(H_2 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 : 3a + 2b + c = 0 \right\} \). Find a basis for \(H_2 \), and find the dimension of \(H_2 \).

3. Let \(B_1 = \{1, 2t, 4t^2 - 2t, 8t^3 - 12t^2\} \) be a basis for \(P_3 \). Find \([5t^2 - 3t]_{B_1}\). (This means the coordinate vector of \(5t^2 - 3t\) relative to the basis \(B_1\).)

4. Let \(B_1 = \{1, 2t, 4t^2 - 2t, 8t^3 - 12t^2\} \) be a basis for \(P_3 \). Let \(\mathcal{E} = \{1, t, t^2, t^3\} \). Find the matrices \(P_{B_1 \leftarrow \mathcal{E}} \) and \(P_{\mathcal{E} \leftarrow B_1} \).

5. Suppose that \(a_1 = \begin{bmatrix} 7 \\ -2 \end{bmatrix} \), \(a_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \), \(b_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \), and \(b_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \). Let \(A = \{a_1, a_2\} \) and \(B = \{b_1, b_2\} \). Find the matrices \(P_{B \leftarrow A} \) and \(P_{A \leftarrow B} \).

6. The matrix \(A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix} \) has an eigenvalue \(\lambda = 3 \). Find a basis of the eigenspace for \(\lambda \).

7. Show that \(\lambda \) is an eigenvalue for \(A \) if and only if \(\lambda \) is an eigenvalue for \(A^T \). \textit{Hint:} Consider \(A - \lambda I \) and \(A^T - \lambda I \).

8. Suppose that \(A \) is an \(n \)-by-\(n \) matrix so that every row adds up to the same number \(s \). Show that \(s \) is an eigenvalue for \(A \) by finding an eigenvector for \(A \).

9. Suppose that \(B \) is an \(n \)-by-\(n \) matrix so that every column adds up to the same number \(s \). Combine the previous two problems to show that \(s \) is an eigenvalue for \(B \).

10. Suppose that \(A \) is a matrix, and \(A^2 = 0 \). Show that the only possible eigenvalue for \(A \) is \(0 \).