MT216.03: Introduction to Abstract Mathematics
 Examination 1
 Answers

1. (20 points) Let d be the greatest common divisor of 24 and 37 . Use the Euclidean algorithm to find d, and to find integers a and b so that $24 a+37 b=d$.
Answer: We have

$$
\begin{aligned}
37 & =1 \cdot 24+13 \\
24 & =1 \cdot 13+11 \\
13 & =1 \cdot 11+2 \\
11 & =5 \cdot 2+1 \\
2 & =2 \cdot 1
\end{aligned}
$$

Therefore,

$$
\begin{array}{rlrl}
1 & =1 \cdot 11 & & +(-5) \cdot(2) \\
& =1 \cdot 11 & & +(-5) \cdot(13-11) \\
& =6 \cdot 11 & & +(-5) \cdot(13) \\
& =6 \cdot(24-13) & +(-5) \cdot(13) \\
& =6 \cdot 24 & & +(-11) \cdot(13) \\
& =6 \cdot 24 & & +(-11) \cdot(37-24) \\
& =17 \cdot 24 & & +(-11) \cdot(37)
\end{array}
$$

2. (20 points) Define a sequence of real numbers with the definitions

$$
\begin{aligned}
& x_{1}=1 \\
& x_{n}=\sqrt{x_{n-1}+1}
\end{aligned}
$$

Prove by induction that $x_{n}<2$ for all positive integers n.
Answer: We can see that $x_{1}<2$. Now, assuming that $x_{k}<2$, we have

$$
\begin{aligned}
x_{k}+1 & <3 \\
\sqrt{x_{k}+1} & <\sqrt{3}<2 \\
x_{k+1} & <2
\end{aligned}
$$

That concludes the induction.
3. (20 points) Let r and n be non-negative integers. Prove using induction that

$$
\sum_{k=0}^{n}\binom{r+k}{k}=\binom{r+n+1}{n}
$$

Answer: We use induction on n. When $n=0$, the left-hand side of the formula gives $\binom{r}{0}=1$, and the right-hand side gives $\binom{r+1}{0}=1$.

Now, assuming that

$$
\sum_{k=0}^{s}\binom{r+k}{k}=\binom{r+s+1}{s}
$$

we have

$$
\sum_{k=0}^{s+1}\binom{r+k}{k}=\sum_{k=0}^{s}\binom{r+k}{k}+\binom{r+s+1}{s+1}=\binom{r+s+1}{s}+\binom{r+s+1}{s+1}=\binom{r+s+2}{s+1}
$$

which establishes the induction.
4. (20 points) Find four different complex numbers z so that $z^{4}=-2$. Express each value of z explicitly in terms of radicals.
Answer: We write $z=r(\cos \theta+i \sin \theta)$, so that $z^{4}=r^{4}(\cos 4 \theta+i \sin 4 \theta)$. We therefore know that $r^{4}=2, \cos 4 \theta=-1$, and $\sin 4 \theta=0$, telling us immediately that $r=\sqrt[4]{2}$.

One solution to the trigonometric equations is $4 \theta=\pi$, meaning that $\theta=\frac{\pi}{4}$, and $z=\sqrt[4]{2}\left(\frac{\sqrt{2}}{2}+\right.$ $\left.\frac{i \sqrt{2}}{2}\right)=\frac{\sqrt[4]{8}}{2}+\frac{i \sqrt[4]{8}}{2}$.

A second solution is $4 \theta=3 \pi$, meaning that $\theta=\frac{3 \pi}{4}$, and $z=\sqrt[4]{2}\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right)=\frac{-\sqrt[4]{8}}{2}+\frac{i \sqrt[4]{8}}{2}$.
A third solution is $4 \theta=5 \pi$. Then $\theta=\frac{5 \pi}{4}$, and $z=\sqrt[4]{2}\left(-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right)=\frac{-\sqrt[4]{8}}{2}-\frac{i \sqrt[4]{8}}{2}$.
The fourth solution is $4 \theta=7 \pi$. Then $\theta=\frac{7 \pi}{4}$, and $z=\sqrt[4]{2}\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right)=\frac{\sqrt[4]{8}}{2}-\frac{i \sqrt[4]{8}}{2}$.
5. (20 points) Suppose that k and n are integers, with $n \geq 2$ and $k \geq 0$. Prove that

$$
F_{n} F_{n+k}-F_{n-1} F_{n+k+1}=(-1)^{n+1} F_{k+1} .
$$

Answer: We proceed by induction on n. When $n=2$, the left-hand side of the formula is $F_{2} F_{k+2}-F_{1} F_{k+3}=F_{k+2}-F_{k+3}=-\left(F_{k+3}-F_{k+2}\right)$, and the right-hand side gives $(-1)^{3} F_{k+1}=$ $-F_{k+1}$. Because $F_{k+3}-F_{k+2}=F_{k+1}$, this formula is correct.

Now, assume that

$$
F_{r} F_{r+k}-F_{r-1} F_{r+k+1}=(-1)^{r+1} F_{k+1} .
$$

We compute

$$
\begin{aligned}
F_{r+1} F_{r+1+k}-F_{r} F_{r+k+2} & =F_{r+1} F_{r+1+k}-F_{r}\left(F_{r+k}+F_{r+k+1}\right) \\
& =F_{r+1} F_{r+1+k}-F_{r} F_{r+k}-F_{r} F_{r+k+1} \\
& =\left(F_{r+1}-F_{r}\right) F_{r+1+k}-F_{r} F_{r+k} \\
& =F_{r-1} F_{r+1+k}-F_{r} F_{r+k} \\
& =-\left(F_{r} F_{r+k}-F_{r-1} F_{r+1+k}\right)=-\left((-1)^{r+1} F_{k+1}\right)=(-1)^{r+2} F_{k+1} .
\end{aligned}
$$

That concludes the induction.

Grade	Number of people
100	3
95	1
90	1
85	1
80	1
75	1
70	1
63	1
60	1
58	1
50	1
15	1

Mean: 74.36
Standard deviation: 23.19

