MT216.03: Introduction to Abstract Mathematics Examination 1 Answers

1. (20 points) Let d be the greatest common divisor of 24 and 37. Use the Euclidean algorithm to find d, and to find integers a and b so that 24a + 37b = d. Answer: We have

$$\begin{array}{c} 37 = 1 \cdot 24 + 13 \\ 24 = 1 \cdot 13 + 11 \\ 13 = 1 \cdot 11 + 2 \\ 11 = 5 \cdot 2 + 1 \\ 2 = 2 \cdot 1 \end{array}$$

Therefore,

$$1 = 1 \cdot 11 + (-5) \cdot (2)$$

= 1 \cdot 11 + (-5) \cdot (13 - 11)
= 6 \cdot 11 + (-5) \cdot (13)
= 6 \cdot (24 - 13) + (-5) \cdot (13)
= 6 \cdot 24 + (-11) \cdot (13)
= 6 \cdot 24 + (-11) \cdot (37 - 24)
= 17 \cdot 24 + (-11) \cdot (37)

2. (20 points) Define a sequence of real numbers with the definitions

$$x_1 = 1$$
$$x_n = \sqrt{x_{n-1} + 1}$$

Prove by induction that $x_n < 2$ for all positive integers n. Answer: We can see that $x_1 < 2$. Now, assuming that $x_k < 2$, we have

$$x_k + 1 < 3$$

$$\sqrt{x_k + 1} < \sqrt{3} < 2$$

$$x_{k+1} < 2$$

That concludes the induction.

3. (20 points) Let r and n be non-negative integers. Prove using induction that

$$\sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}.$$

Answer: We use induction on n. When n = 0, the left-hand side of the formula gives $\binom{r}{0} = 1$, and the right-hand side gives $\binom{r+1}{0} = 1$. Now, assuming that

$$\sum_{k=0}^{s} \binom{r+k}{k} = \binom{r+s+1}{s},$$

we have

$$\sum_{k=0}^{s+1} \binom{r+k}{k} = \sum_{k=0}^{s} \binom{r+k}{k} + \binom{r+s+1}{s+1} = \binom{r+s+1}{s} + \binom{r+s+1}{s+1} = \binom{r+s+2}{s+1},$$

which establishes the induction.

4. (20 points) Find four different complex numbers z so that $z^4 = -2$. Express each value of z explicitly in terms of radicals.

Answer: We write $z = r(\cos \theta + i \sin \theta)$, so that $z^4 = r^4(\cos 4\theta + i \sin 4\theta)$. We therefore know that $r^4 = 2$, $\cos 4\theta = -1$, and $\sin 4\theta = 0$, telling us immediately that $r = \sqrt[4]{2}$.

One solution to the trigonometric equations is $4\theta = \pi$, meaning that $\theta = \frac{\pi}{4}$, and $z = \sqrt[4]{2}(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}) = \frac{\sqrt[4]{8}}{2} + \frac{i\sqrt{48}}{2}$.

A second solution is $4\theta = 3\pi$, meaning that $\theta = \frac{3\pi}{4}$, and $z = \sqrt[4]{2}(-\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}) = -\frac{4\sqrt{8}}{2} + \frac{i\sqrt{48}}{2}$. A third solution is $4\theta = 5\pi$. Then $\theta = \frac{5\pi}{4}$, and $z = \sqrt[4]{2}(-\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2}) = -\frac{4\sqrt{8}}{2} - \frac{i\sqrt{8}}{2}$. The fourth solution is $4\theta = 7\pi$. Then $\theta = \frac{7\pi}{4}$, and $z = \sqrt[4]{2}(\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2}) = \frac{4\sqrt{8}}{2} - \frac{i\sqrt{48}}{2}$.

5. (20 points) Suppose that k and n are integers, with $n \ge 2$ and $k \ge 0$. Prove that

$$F_n F_{n+k} - F_{n-1} F_{n+k+1} = (-1)^{n+1} F_{k+1}.$$

Answer: We proceed by induction on n. When n = 2, the left-hand side of the formula is $F_2F_{k+2} - F_1F_{k+3} = F_{k+2} - F_{k+3} = -(F_{k+3} - F_{k+2})$, and the right-hand side gives $(-1)^3F_{k+1} = -F_{k+1}$. Because $F_{k+3} - F_{k+2} = F_{k+1}$, this formula is correct.

Now, assume that

$$F_r F_{r+k} - F_{r-1} F_{r+k+1} = (-1)^{r+1} F_{k+1}.$$

We compute

$$F_{r+1}F_{r+1+k} - F_rF_{r+k+2} = F_{r+1}F_{r+1+k} - F_r(F_{r+k} + F_{r+k+1})$$

= $F_{r+1}F_{r+1+k} - F_rF_{r+k} - F_rF_{r+k+1}$
= $(F_{r+1} - F_r)F_{r+1+k} - F_rF_{r+k}$
= $F_{r-1}F_{r+1+k} - F_rF_{r+k}$
= $-(F_rF_{r+k} - F_{r-1}F_{r+1+k}) = -((-1)^{r+1}F_{k+1}) = (-1)^{r+2}F_{k+1}.$

That concludes the induction.

Grade	Number of people
100	3
95	1
90	1
85	1
80	1
75	1
70	1
63	1
60	1
58	1
50	1
15	1

Mean: 74.36 Standard deviation: 23.19