MT216.03: Introduction to Abstract Mathematics Examination 2 Answers

- 1. (15 points) Let n and k be integers, with $n \ge 0$.
 - (a) Give the complete definition of the binomial coefficient $\binom{n}{k}$.
 - (b) State the binomial theorem.
 - (c) What is the coefficient of x^{18} in $(x + 2)^{20}$? State your answer both as a binomial coefficient and as a positive integer.

Answer: (a) If
$$k < 0$$
 or $k > n$, we have $\binom{n}{k} = 0$, and otherwise $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
(b) $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
(c) The coefficient is $2^2 \binom{20}{18} = 4 \cdot \frac{20 \cdot 19}{2} = 4 \cdot 190 = 760$.

2. (20 points) Let $f : X \to Y$ be a function. Suppose that for all subsets $A, B \subset X$, we know that $f(A \cup B) = f(A) \cup f(B)$. Prove or give a counterexample:

- (a) f must be a surjection.
- (b) f must be an injection.

Answer: We proved in class that $f(A \cup B) = f(A) \cup f(B)$ for all functions, so both statements are *false*.

(a) A counterexample is given by $f : \{1\} \to \{1,2\}$ with f(1) = 1. This function is not a surjection, and because $\{1\}$ has only two subsets— $\{1\}$ and \emptyset —it is easy to verify that $f(A \cup B) = f(A) \cup f(B)$ for all subsets.

(b) A counterexample is given by $f : \{1, 2\} \to \{1\}$ with f(1) = f(2) = 1. Because the only value taken by the function is 1, it is clear that $f(A) \cup f(B) = f(A \cup B)$.

3. (20 points) Use the Chinese Remainder Theorem to find the smallest positive integer n so that

- n has a remainder of 15 when divided by 19.
- n has a remainder of 12 when divided by 21.
- n is odd.

Answer: We need to solve

$$n \equiv 15 \pmod{19}$$
$$n \equiv 12 \pmod{21}$$
$$n \equiv 1 \pmod{2}$$

The first tells us that n = 19a + 15, and substitution into the second congruence gives $19a + 15 \equiv 12 \pmod{21}$, or $19a \equiv -3 \pmod{21}$. This is the same as $-19a \equiv 3 \pmod{21}$, or $2a \equiv 3 \pmod{21}$, or $2a \equiv 24 \pmod{21}$, meaning that $a \equiv 12 \pmod{21}$. We now know that a = 21b + 12, and so $n = 19(21b + 12) + 15 = 19 \cdot 21b + 19 \cdot 12 + 15 = 19 \cdot 21b + 228 + 15 = 19 \cdot 21b + 243$. Now, $19 \cdot 21b + 243 \equiv 1 \pmod{2}$ says that $b \equiv 0 \pmod{2}$. Set b = 2c, and we

have $n = 2 \cdot 19 \cdot 21c + 243$, and the smallest positive integer satisfying all three congruences is 243.

4. (30 points) Suppose that A and B are sets, and $f : A \to B$ any function. Define a relation on A by saying that if $a_1, a_2 \in A$, then $a_1 \sim a_2$ if $f(a_1) = f(a_2)$.

- (a) Show that this relation is an equivalence relation.
- (b) Take the specific example of $A = \mathbf{C}$, $B = \mathbf{C}$, and $f(z) = z^4$. What is the equivalence class of the number 1 + i under this equivalence relation?

Answer: (a) An equivalence relation is reflexive, symmetric, and transitive. The first says that $a \sim a$ for all $a \in A$. The second says that if $a \sim b$, then $b \sim a$. The third says that if $a \sim b$ and $b \sim c$, then $a \sim c$.

(b) Because f(a) = f(a), we have $a \sim a$. If $a \sim b$, then f(a) = f(b), so f(b) = f(a), and then $b \sim a$. If $a \sim b$ and $b \sim c$, then f(a) = f(b) and f(b) = f(c), so f(a) = f(c), and then $a \sim c$.

(c) If $z \sim 1 + i$, then $z^4 = (1+i)^4 = (2i)^2 = -4$. The four elements of the equivalence class are 1 + i, 1 - i, -1 + i, and -1 - i.

5. (5 points) Suppose that $h: Y \to Z$ is a function, and $B \subseteq Z$. What is the definition of the set $h^{-1}(B)$?

Answer: We have $h^{-1}(B) = \{y \in Y : h(y) \in B\}.$

6. (10 points) Suppose that ζ is a root of unity.

(a) Define what is meant by the order of ζ .

(b) Suppose that ζ has order 60. What is the order of ζ^{36} ?

Answer: (a) The order of ζ is the smallest positive integer k so that $\zeta^k = 1$.

(b) We know that if $o(\zeta) = n$, then $o(\zeta^a) = n/(n, a)$. In this case, the formula gives $o(\zeta^{36}) = 60/(36, 60) = 5$.

Grade Number of people

84	1
83	1
79	1
75	1
73	2
67	1
66	2
65	1
63	1
50	1
44	1
10	1

Mean: 64.14 Standard deviation: 18.52