MT216.03: Introduction to Abstract Mathematics
Examination 2
Answers

1. (15 points) Let n and k be integers, with $n \geq 0$.
(a) Give the complete definition of the binomial coefficient $\binom{n}{k}$.
(b) State the binomial theorem.
(c) What is the coefficient of x^{18} in $(x+2)^{20}$? State your answer both as a binomial coefficient and as a positive integer.
Answer: (a) If $k<0$ or $k>n$, we have $\binom{n}{k}=0$, and otherwise $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
(b) $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
(c) The coefficient is $2^{2}\binom{20}{18}=4 \cdot \frac{20 \cdot 19}{2}=4 \cdot 190=760$.
2. (20 points) Let $f: X \rightarrow Y$ be a function. Suppose that for all subsets $A, B \subset X$, we know that $f(A \cup B)=f(A) \cup f(B)$. Prove or give a counterexample:
(a) f must be a surjection.
(b) f must be an injection.

Answer: We proved in class that $f(A \cup B)=f(A) \cup f(B)$ for all functions, so both statements are false.
(a) A counterexample is given by $f:\{1\} \rightarrow\{1,2\}$ with $f(1)=1$. This function is not a surjection, and because $\{1\}$ has only two subsets- $\{1\}$ and \emptyset-it is easy to verify that $f(A \cup B)=f(A) \cup f(B)$ for all subsets.
(b) A counterexample is given by $f:\{1,2\} \rightarrow\{1\}$ with $f(1)=f(2)=1$. Because the only value taken by the function is 1 , it is clear that $f(A) \cup f(B)=f(A \cup B)$.
3. (20 points) Use the Chinese Remainder Theorem to find the smallest positive integer n so that

- n has a remainder of 15 when divided by 19 .
- n has a remainder of 12 when divided by 21 .
- n is odd.

Answer: We need to solve

$$
\begin{array}{ll}
n \equiv 15 & (\bmod 19) \\
n \equiv 12 & (\bmod 21) \\
n \equiv 1 & (\bmod 2)
\end{array}
$$

The first tells us that $n=19 a+15$, and substitution into the second congruence gives $19 a+15 \equiv 12(\bmod 21)$, or $19 a \equiv-3(\bmod 21)$. This is the same as $-19 a \equiv 3(\bmod 21)$, or $2 a \equiv 3(\bmod 21)$, or $2 a \equiv 24(\bmod 21)$, meaning that $a \equiv 12(\bmod 21)$. We now know that $a=21 b+12$, and so $n=19(21 b+12)+15=19 \cdot 21 b+19 \cdot 12+15=19 \cdot 21 b+228+15=$ $19 \cdot 21 b+243$. Now, $19 \cdot 21 b+243 \equiv 1(\bmod 2)$ says that $b \equiv 0(\bmod 2)$. Set $b=2 c$, and we
have $n=2 \cdot 19 \cdot 21 c+243$, and the smallest positive integer satisfying all three congruences is 243 .
4. (30 points) Suppose that A and B are sets, and $f: A \rightarrow B$ any function. Define a relation on A by saying that if $a_{1}, a_{2} \in A$, then $a_{1} \sim a_{2}$ if $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(a) Show that this relation is an equivalence relation.
(b) Take the specific example of $A=\mathbf{C}, B=\mathbf{C}$, and $f(z)=z^{4}$. What is the equivalence class of the number $1+i$ under this equivalence relation?
Answer: (a) An equivalence relation is reflexive, symmetric, and transitive. The first says that $a \sim a$ for all $a \in A$. The second says that if $a \sim b$, then $b \sim a$. The third says that if $a \sim b$ and $b \sim c$, then $a \sim c$.
(b) Because $f(a)=f(a)$, we have $a \sim a$. If $a \sim b$, then $f(a)=f(b)$, so $f(b)=f(a)$, and then $b \sim a$. If $a \sim b$ and $b \sim c$, then $f(a)=f(b)$ and $f(b)=f(c)$, so $f(a)=f(c)$, and then $a \sim c$.
(c) If $z \sim 1+i$, then $z^{4}=(1+i)^{4}=(2 i)^{2}=-4$. The four elements of the equivalence class are $1+i, 1-i,-1+i$, and $-1-i$.
5. (5 points) Suppose that $h: Y \rightarrow Z$ is a function, and $B \subseteq Z$. What is the definition of the set $h^{-1}(B)$?
Answer: We have $h^{-1}(B)=\{y \in Y: h(y) \in B\}$.
6. (10 points) Suppose that ζ is a root of unity.
(a) Define what is meant by the order of ζ.
(b) Suppose that ζ has order 60 . What is the order of ζ^{36} ?

Answer: (a) The order of ζ is the smallest positive integer k so that $\zeta^{k}=1$.
(b) We know that if $o(\zeta)=n$, then $o\left(\zeta^{a}\right)=n /(n, a)$. In this case, the formula gives $o\left(\zeta^{36}\right)=60 /(36,60)=5$.

Grade	Number of people
84	1
83	1
79	1
75	1
73	2
67	1
66	2
65	1
63	1
50	1
44	1
10	1

Mean: 64.14
Standard deviation: 18.52

