MT216.03: Introduction to Abstract Mathematics
 Examination 3
 Answers

1. (20 points) Let $f(x), g(x) \in \mathbf{F}_{7}[x]$, with $f(x)=5 x^{2}+x+2$ and $g(x)=2 x+3$. Compute the monic greatest common divisor $d(x)$ of f and g, and find polynomials $a(x), b(x) \in \mathbf{F}_{7}[x]$ so that $d(x)=a(x) f(x)+b(x) g(x)$.
Answer: We start with long division:

$$
2 x + 3 \longdiv { 6 x + 2 } \begin{array} { r }
{ 5 x ^ { 2 } + x + 2 } \\
{ \frac { 5 x ^ { 2 } + 4 x } { 4 x + 2 } } \\
{ \frac { 4 x + 6 } { 3 } }
\end{array}
$$

Therefore, $f(x)=(6 x+2) g(x)+3$, and so $3=f(x)-(6 x+2) g(x)=f(x)+(x+5) g(x)$. Multiply by 5 , and we have $1=5 f(x)+(5 x+4) g(x)$.
2. (10 points) What is the remainder when 3^{75} is divided by 36 ?

Answer: We know that $3^{75} \equiv 0(\bmod 9)$. We can use Euler's Theorem to see that $3^{\phi(4)} \equiv 1(\bmod 4)$. Because $\phi(4)=2$, we know that $3^{2} \equiv 1(\bmod 4)$, and therefore $3^{75} \equiv 3^{74} 3 \equiv 3(\bmod 4)$. We now have a Chinese Remainder Theorem problem:

$$
\begin{aligned}
& 3^{75} \equiv 0 \quad(\bmod 9) \\
& 3^{75} \equiv 3 \quad(\bmod 4)
\end{aligned}
$$

You can either solve this systematically, or else just observe after trial and error (trying multiples of 9) that a solution is $3^{75} \equiv 27$. Therefore, the remainder is 27 .
3. (10 points) Give an example of a degree 6 polynomial which you can show is irreducible by using Eisenstein's Criterion. Be sure to explain your answer.
Answer: Take $p=2$, and take the polynomial $x^{6}+2$. We see that 2 does not divided the highest coefficient, and 2 divides every other coefficient, and 2^{2} does not divide the constant term.
4. (20 points) Suppose that $f(x), g(x) \in \mathbf{C}[x]$ and we know that

- $\operatorname{deg}(f)=\operatorname{deg}(g)=n$, with $n \geq 1$.
- $f(1)=g(1), f(2)=g(2), \ldots, f(n)=g(n)$.
- $f^{\prime}(1)=g^{\prime}(1)$.

Prove or give a counterexample: $f(x)=g(x)$.
Answer: This statement is true.
Let $h(x)=f(x)-g(x)$, and then if $h(x) \neq 0$, we have $\operatorname{deg}(h) \leq n$. We know that $h(1)=h(2)=$ $\cdots=h(n)$, and so h must be divisible by $(x-1)(x-2) \cdots(x-n)$. That is not yet a contradiction.

However, if $h(1)=h^{\prime}(1)=0$, we know that $(x-1)^{2}$ must divide $h(x)$, and so in fact $(x-1)^{2}(x-$ 2) $\cdots(x-n) \mid h(x)$. Now, a polynomial of degree $n+1$ cannot divide a polynomial of degree n. The only resolution is to conclude that $h(x)=0$, and then $f(x)=g(x)$.
5. (20 points) List all eight cubic polynomials in $\mathbf{F}_{2}[x]$, and indicate which of them are irreducible in $\mathbf{F}_{2}[x]$. Be sure to explain your answer fully.

Answer: To see if a cubic polynomial in $\mathbf{F}_{2}[x]$ is irreducible, it suffices to see if it has a root in \mathbf{F}_{2}, which amounts to substituting $x=0$ and $x=1$ into the polynomial and evaluating. The results are:

Polynomial	$f(0)$	$f(1)$	Irreducible?
x^{3}	0	1	N
$x^{3}+1$	1	0	N
$x^{3}+x$	0	0	N
$x^{3}+x+1$	1	1	Y
$x^{3}+x^{2}$	0	0	N
$x^{3}+x^{2}+1$	1	1	Y
$x^{3}+x^{2}+x$	0	1	N
$x^{3}+x^{2}+x+1$	1	0	N

There are two irreducible cubic polynomials in $\mathbf{F}_{2}[x]: x^{3}+x+1$ and $x^{3}+x^{2}+1$.
6. (20 points) Let $f: \mathbf{Z} \rightarrow \mathbf{Q}$ be defined by the formula $f(n)=\frac{n}{2 n^{2}-1}$.
(a) Is f a surjective function?
(b) Is f an injective function?

Answer: (a) The function f is not surjective. To see this, we try to solve $f(n)=2$, and we are led to the equation $n=4 n^{2}-2$, or $4 n^{2}-n-2=0$. The solutions are $n=\frac{1 \pm \sqrt{33}}{2}$. Because the two roots are not elements of \mathbf{Z}, we see that the function is not surjective.
(b) This function is injective. Suppose that $f(n)=f(m)$, with $n, m \in \mathbf{Z}$, and $n \neq m$. We have

$$
\begin{aligned}
\frac{n}{2 n^{2}-1} & =\frac{m}{2 m^{2}-1} \\
2 n m^{2}-n & =2 m n^{2}-m \\
2 n m^{2}-2 m n^{2} & =n-m \\
2 m n(m-n) & =n-m \\
2 m n & =-1
\end{aligned}
$$

This equation has no solutions with $m, n \in \mathbf{Z}$, and therefore the function is injective.

Grade	Number of
79	1
77	1
73	1
70	1
57	1
55	1
51	1
50	1
47	1
46	1
42	1
38	1
35	1

Mean: 55.38
Standard deviation: 14.29

