MT216.03: Introduction to Abstract Mathematics Final Examination Answers

1. (10 points) Use the Euclidean algorithm to find the smallest positive integer n so that

$$
31 n \equiv 4 \quad(\bmod 43)
$$

or prove that there are no solutions.
Answer: We have

$$
\begin{aligned}
43 & =1 \cdot 31+12 \\
31 & =2 \cdot 12+7 \\
12 & =1 \cdot 7+5 \\
7 & =1 \cdot 5+2 \\
5 & =2 \cdot 2+1
\end{aligned}
$$

Therefore,

$$
\begin{array}{rlrl}
1 & =1 \cdot 5 & & +(-2)(2) \\
& =1 \cdot 5 & & +(-2)(7-5) \\
& =3 \cdot 5 & & +(-2)(7) \\
& =3 \cdot(12-7) & & +(-2)(7) \\
& =3 \cdot 12 & & +(-5)(7) \\
& =3 \cdot 12 & & +(-5)(31-2 \cdot 12) \\
& =13 \cdot 12 & & +(-5)(31) \\
& =13 \cdot 12 & & +(-5)(31) \\
& =13 \cdot(43-31)+(-5)(31) \\
& =13 \cdot 43 & & +(-18)(31)
\end{array}
$$

Therefore, $31(-18) \equiv 1(\bmod 43)$, and so $31(-72) \equiv 4(\bmod 43)$. However, the problem asks for the smallest positive integer solving the congruence, so we need to note that $-72 \equiv 14(\bmod 43)$.
2. (5 points) Find a non-constant monic sixth degree polynomial $f(x) \in \mathbf{Z}[x]$ so that:

- $f(3)=f^{\prime}(3)=0$
- $f(5)=f^{\prime}(5)=f^{\prime \prime}(5)=0$
- $f(6)=0$
or prove that no such polynomial exists. You can state your answer as a product of irreducible polynomials.
Answer: $f(x)=(x-3)^{2}(x-5)^{3}(x-6)$.

3. (5 points) On my calculator, I can compute that

$$
\begin{aligned}
2^{8910} & \equiv 1 \quad(\bmod 8911) \\
3^{8910} & \equiv 1 \quad(\bmod 8911) \\
(2,8911) & =1 \\
(3,8911) & =1
\end{aligned}
$$

Based on these computations, which of the following conclusions can be drawn?
(a) 8911 is definitely composite.
(b) 8911 is definitely prime.
(c) 8911 could be either prime or composite.

Be sure to explain your answer.
Answer: If 8911 were prime, then Fermat's Little Theorem tells us that $a^{8910} \equiv 1(\bmod 8911)$ for $a=1,2, \ldots, 8910$. However, the given information is the converse of the theorem, and so the correct answer based on these congruences is (c). In fact, $7 \cdot 19 \cdot 67$.
4. (10 points) A horde of 12 Mongol invaders has raided a castle, and found a treasure trove of gold coins. The invaders attempt to divide the pile of coins evenly, and find that there are 3 remaining. A mêlee ensues, and 5 of the invaders die. The remaining 7 members of the horde try again to divide the coins evenly, and now there are 4 coins left over. Another fight ensues, and 2 more invaders die. The remaining 5 marauders now divide the pile evenly.

What is the smallest number of coins that could be in the trove?
Answer: We need to solve the congruences

$$
\begin{array}{lll}
n \equiv 3 & (\bmod 12) \\
n \equiv 4 & (\bmod & 7) \\
n \equiv 0 & (\bmod & 5)
\end{array}
$$

The first congruence tells us that $n=12 k+3$. Substitution into the second congruence yields $12 k+3 \equiv 4(\bmod 7)$, or $5 k \equiv 1(\bmod 7)$. This congruence has solution $k \equiv 3(\bmod 7)$, so $k=7 j+3$. Therefore, $n=12(7 j+3)+3=84 j+39$.

We now solve $84 j+39 \equiv 0(\bmod 5)$. That simplifies to $4 j \equiv 1(\bmod 5)$, with solution $j \equiv 4(\bmod 5)$, so $j=5 m+4$, and $n=84(5 m+4)+39=420 m+336+39=420 m+375$. Therefore, the smallest number of coins that could be in the trove is 375 .
5. (10 points) Let n be a positive integer. Prove using induction that

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}
$$

Hint: Use the identity $\left(1-x^{2}\right)^{n}=\left(1-x^{2}\right)^{n-1}-x^{2}\left(1-x^{2}\right)^{n-1}$ and integrate by parts.
Answer: We first check that the formula is correct when $n=1$. We have $\int_{0}^{1}\left(1-x^{2}\right) d x=x-x^{3} /\left.3\right|_{0} ^{1}=2 / 3$, while $\frac{2^{2}(1!)^{2}}{3!}=4 / 6$.

Now, assuming that $\int_{0}^{1}\left(1-x^{2}\right)^{k} d x=\frac{2^{2 k}(k!)^{2}}{(2 k+1)!}$, we have

$$
\int_{0}^{1}\left(1-x^{2}\right)^{k+1} d x=\int_{0}^{1}\left(1-x^{2}\right)^{k} d x+\int_{0}^{1} x(-x)\left(1-x^{2}\right)^{k} d x
$$

$$
=\frac{2^{2 k}(k!)^{2}}{(2 k+1)!}+\int_{0}^{1} x(-x)\left(1-x^{2}\right)^{k} d x
$$

$\left[u=x, d u=d x, d v=(-x)\left(1-x^{2}\right)^{k}, v=\left(1-x^{2}\right)^{k+1} /(2 k+2)\right]$

$$
\begin{aligned}
& =\frac{2^{2 k}(k!)^{2}}{(2 k+1)!}+\left.x \frac{\left(1-x^{2}\right)^{k+1}}{2 k+2}\right|_{0} ^{1}-\frac{1}{2 k+2} \int_{0}^{1}\left(1-x^{2}\right)^{k+1} d x \\
& =\frac{2^{2 k}(k!)^{2}}{(2 k+1)!}-\frac{1}{2 k+2} \int_{0}^{1}\left(1-x^{2}\right)^{k+1} d x \\
\frac{2 k+3}{2 k+2} \int_{0}^{1}\left(1-x^{2}\right)^{k+1} d x & =\frac{2^{2 k}(k!)^{2}}{(2 k+1)!} \\
\int_{0}^{1}\left(1-x^{2}\right)^{k+1} d x & =\left(\frac{2 k+2}{2 k+3}\right) \frac{2^{2 k}(k!)^{2}}{(2 k+1)!}=\left(\frac{2 k+2}{2 k+3}\right)\left(\frac{2 k+2}{2 k+2}\right) \frac{2^{2 k}(k!)^{2}}{(2 k+1)!} \\
& =\frac{2^{2 k+2}((k+1)!)^{2}}{(2 k+3)!} .
\end{aligned}
$$

This is the desired conclusion to establish the induction.
6. (10 points) Remember that the set μ_{1000} is defined by $\mu_{1000}=\left\{z \in \mathbf{C} \mid z^{1000}=1\right\}$. Let j be a positive integer, and define $f: \mu_{1000} \rightarrow \mu_{1000}$ with the formula $f(x)=x^{j}$.
(a) If $(j, 1000)=1$, prove that f is a bijection.
(b) If $(j, 1000) \neq 1$, prove that f is not a bijection.

Answer: (a) Suppose that $(j, 1000)=1$. Find integers m and n so that $j m+1000 n=1$. Let $g: \mu_{1000} \rightarrow \mu_{1000}$ be defined by the formula $g(x)=x^{m}$. Then $f(g(x))=g(f(x))=x^{m j}=x^{1-1000 n}=x^{1}\left(x^{1000}\right)^{-n}=x \cdot 1^{-n}=x$. Because $f \circ g$ and $g \circ f$ are both the identity, f is invertible, and therefore a bijection.
(b) This can be done in general, but it's a bit more enlightening to take advantage of numerical properties of 1000. Suppose that $(j, 1000) \neq 1$. Because $1000=2^{3} 5^{3}$, we can conclude that either $2 \mid j$ or $5 \mid j$.

Suppose first that $2 \mid j$. In that case $f(-1)=(-1)^{j}=1$ and $f(1)=1^{j}=1$, so f is not an injection.
On the other hand, if $5 \mid j$, we have $f\left(e^{2 \pi i / 5}\right)=e^{2 \pi i j / 5}=1$ and $f(1)=1$, so again we see that f is not an injection.
7. (10 points) Define a sequence $\left\{x_{n}\right\}$ with the formulas

$$
\begin{aligned}
x_{1} & =2 \\
x_{n+1} & =\sqrt{4+x_{n}} \quad n \geq 1
\end{aligned}
$$

For example, $x_{2}=\sqrt{6}$ and $x_{3}=\sqrt{4+\sqrt{6}}$.
Prove
(a) $x_{n} \leq 3$.
(b) $x_{n} \leq x_{n+1}$.

Answer: (a) We proceed by induction. When $n=1$, we clearly have $x_{n} \leq 3$.
If we have $x_{k} \leq 3$, then $x_{k+1}=\sqrt{4+x_{k}} \leq \sqrt{4+3}=\sqrt{7} \leq 3$. That establishes the induction.
(b) We proceed by induction. We have $x_{1}=2$ and $x_{2}=\sqrt{6}$, so $x_{1} \leq x_{2}$.

Now, assuming that $x_{k} \leq x_{k+1}$, we have $4+x_{k} \leq 4+x_{k+1}$. Therefore, $\sqrt{4+x_{k}} \leq \sqrt{4+x_{k+1}}$, and so $x_{k+1} \leq x_{k+2}$, establishing the induction.
8. (5 points) Find 3 complex numbers which solve the equation $z^{3}=7$. Write each of those numbers in the form $a+b i$, where a and b are real numbers expressed using radicals.
Answer: Write $z=r e^{i \theta}$, so $z^{3}=r^{3} e^{3 i \theta}$. We therefore have $r^{3}=7$, so $r=\sqrt[3]{7}$. We also have $e^{3 i \theta}=1$, with three possibilities:

$$
\begin{aligned}
& 3 \theta=0 \\
& 3 \theta=2 \pi \\
& 3 \theta=4 \pi
\end{aligned}
$$

In the first case, we have $\theta=0$ and $z=\sqrt[3]{7}$. In the second, we have $\theta=2 \pi / 3$, and $z=\sqrt[3]{7} e^{2 \pi i / 3}=\sqrt[3]{7}(\cos (2 \pi / 3)+$ $i \sin (2 \pi / 3))=\sqrt[3]{7}(-1 / 2+i \sqrt{3} / 2)$. In the third case, we conclude that $z=\sqrt[3]{7}(-1 / 2-i \sqrt{3} / 2)$. The three answers are

$$
\sqrt[3]{7}+0 i \quad-\frac{\sqrt[3]{7}}{2}+i \frac{\sqrt{3} \sqrt[3]{7}}{2} \quad-\frac{\sqrt[3]{7}}{2}-i \frac{\sqrt{3} \sqrt[3]{7}}{2}
$$

9. (5 points) There are 9 monic quadratic polynomials in $\mathbf{F}_{3}[x]$. List all 9 of these polynomials, and indicate which are irreducible.
Answer: To see if a quadratic polynomial is irreducible in $\mathbf{F}_{3}[x]$, it suffices to see if it has any roots in \mathbf{F}_{3}, which can be determined by computing $f(0), f(1)$, and $f(2)$. We have

Polynomial	$f(0)$	$f(1)$	$f(2)$	Irreducible?
x^{2}	0	1	1	N
$x^{2}+1$	1	2	2	Y
$x^{2}+2$	2	0	0	N
$x^{2}+x$	0	2	0	N
$x^{2}+x+1$	1	0	1	N
$x^{2}+x+2$	2	1	2	Y
$x^{2}+2 x$	0	0	2	N
$x^{2}+2 x+1$	1	1	0	N
$x^{2}+2 x+2$	2	2	1	Y

Therefore, the irreducible polynomials are $x^{2}+1, x^{2}+x+2$, and $x^{2}+2 x+2$.
10. (10 points) As usual, define the Fibonacci numbers by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Let $\alpha=\frac{1}{2}(1+\sqrt{5})$ and $\beta=\frac{1}{2}(1-\sqrt{5})$. You may use the facts that $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$.

Prove using induction that

$$
F_{n+1}=\alpha F_{n}+\beta^{n}
$$

for $n \geq 1$.

Answer: We check that when $n=1$, we get $F_{2}=1$, and $\alpha F_{1}+\beta=\alpha+\beta=1$. We also need to check the formula for $n=2$, and then we have $F_{3}=2$, and $\alpha F_{2}+\beta^{2}=\alpha+\beta+1=1+1=2$.

We now proceed using strong induction. We assume that the statement is true when $n=k-2$ and $n=k-1$, and add:

$$
\begin{aligned}
F_{k-1} & =\alpha F_{k-2}+\beta^{k-2} \\
F_{k} & =\alpha F_{k-1}+\beta^{k-1}
\end{aligned}
$$

Adding yields $F_{k+1}=\alpha\left(F_{k-2}+F_{k-2}\right)+\beta^{k-2}+\beta^{k-1}=\alpha F_{k}+\beta^{k-2}(1+\beta)=\alpha F_{k}+\beta^{k-2} \beta^{2}=\alpha F_{k}+\beta^{k}$. This establishes the induction.
11. (10 points) Suppose that n and k are positive integers, with $n>k>1$. Prove using the definition of binomial coefficient that

$$
\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}=\binom{n-1}{k}\binom{n+1}{k+1}\binom{n}{k-1} .
$$

Answer: We have

$$
\begin{aligned}
\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k} & =\left(\frac{(n-1)!}{(n-k)!(k-1)!}\right)\left(\frac{n!}{(n-k-1)!(k+1)!}\right)\left(\frac{(n+1)!}{(n+1-k)!k!}\right) \\
& =\left(\frac{(n-1)!}{(n-1-k)!k!}\right)\left(\frac{(n+1)!}{(n-k)!(k+1)!}\right)\left(\frac{n!}{(k-1)!(n+1-k)!}\right) \\
& =\binom{n-1}{k}\binom{n+1}{k+1}\binom{n}{k-1} .
\end{aligned}
$$

12. (10 points) Suppose that F is a field, and $f(x)=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0} \in F[x]$, with $n \geq 2$. Suppose that $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n} \in F$ are the n roots of $f(x)$. Prove that

$$
c_{0}=(-1)^{n} \gamma_{1} \gamma_{2} \cdots \gamma_{n}
$$

and

$$
c_{n-1}=-\left(\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}\right)
$$

Answer: We know that $f(x)=\left(x-\gamma_{1}\right)\left(x-\gamma_{2}\right)\left(x-\gamma_{3}\right) \cdots\left(x-\gamma_{n}\right)$. Substitution of $x=0$ yields $c_{0}=\left(-\gamma_{1}\right)\left(-\gamma_{2}\right) \cdots\left(-\gamma_{n}\right)=$ $(-1)^{n} \gamma_{1} \gamma_{2} \cdots \gamma_{n}$.

We can also multiply out the factorization of $f(x)$, and look at the coefficient of x^{n-1}. The way to get x^{n-1} in the product is to have $n-1$ factors of x and one factor of $-\gamma_{k}$. We conclude that the x^{n-1} term looks like $\left(-\gamma_{1}-\gamma_{2}-\cdots-\gamma_{n}\right) x^{n-1}$. Because we know that the x^{n-1} term is also $c_{n-1} x^{n-1}$, we have $c_{n-1}=-\gamma_{1}-\gamma_{2}-\cdots-\gamma_{n}$.

Grade Number of people

86	1
83	1
80	1
73	1
72	3
71	1
70	2
65	1
61	1
43	1

Mean: 70.62
Standard deviation: 10.29

