
MT216.03: Introduction to Abstract Mathematics
Final Examination

Answers

1. (10 points) Use the Euclidean algorithm to find the smallest positive integer n so that

31n ≡ 4 (mod 43)

or prove that there are no solutions.
Answer: We have

43 = 1· 31 + 12
31 = 2· 12 + 7
12 = 1· 7 + 5
7 = 1· 5 + 2
5 = 2· 2 + 1

Therefore,
1 = 1 · 5 + (−2) (2)

= 1 · 5 + (−2) (7 − 5)
= 3 · 5 + (−2) (7)
= 3 · (12 − 7) + (−2) (7)
= 3 · 12 + (−5) (7)
= 3 · 12 + (−5) (31 − 2 · 12)
= 13 · 12 + (−5) (31)
= 13 · 12 + (−5) (31)
= 13 · (43 − 31) + (−5) (31)
= 13 · 43 + (−18) (31)

Therefore, 31(−18) ≡ 1 (mod 43), and so 31(−72) ≡ 4 (mod 43). However, the problem asks for the smallest positive
integer solving the congruence, so we need to note that −72 ≡ 14 (mod 43).

2. (5 points) Find a non-constant monic sixth degree polynomial f (x) ∈ Z[x] so that:
• f (3) = f ′(3) = 0
• f (5) = f ′(5) = f ′′(5) = 0
• f (6) = 0

or prove that no such polynomial exists. You can state your answer as a product of irreducible polynomials.
Answer: f (x) = (x − 3)2(x − 5)3(x − 6).

3. (5 points) On my calculator, I can compute that

28910 ≡ 1 (mod 8911)

38910 ≡ 1 (mod 8911)
(2, 8911) = 1
(3, 8911) = 1

Based on these computations, which of the following conclusions can be drawn?
(a) 8911 is definitely composite.
(b) 8911 is definitely prime.
(c) 8911 could be either prime or composite.

Be sure to explain your answer.
Answer: If 8911 were prime, then Fermat’s Little Theorem tells us that a8910 ≡ 1 (mod 8911) for a = 1, 2, . . . , 8910.
However, the given information is the converse of the theorem, and so the correct answer based on these congruences is
(c). In fact, 7 · 19 · 67.

4. (10 points) A horde of 12 Mongol invaders has raided a castle, and found a treasure trove of gold coins. The invaders
attempt to divide the pile of coins evenly, and find that there are 3 remaining. A mêlée ensues, and 5 of the invaders die.
The remaining 7 members of the horde try again to divide the coins evenly, and now there are 4 coins left over. Another
fight ensues, and 2 more invaders die. The remaining 5 marauders now divide the pile evenly.
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What is the smallest number of coins that could be in the trove?
Answer: We need to solve the congruences

n ≡ 3 (mod 12)
n ≡ 4 (mod 7)
n ≡ 0 (mod 5)

The first congruence tells us that n = 12k + 3. Substitution into the second congruence yields 12k + 3 ≡ 4 (mod 7), or
5k ≡ 1 (mod 7). This congruence has solution k ≡ 3 (mod 7), so k = 7 j + 3. Therefore, n = 12(7 j + 3) + 3 = 84 j + 39.

We now solve 84 j +39 ≡ 0 (mod 5). That simplifies to 4 j ≡ 1 (mod 5), with solution j ≡ 4 (mod 5), so j = 5m +4,
and n = 84(5m + 4) + 39 = 420m + 336 + 39 = 420m + 375. Therefore, the smallest number of coins that could be in
the trove is 375.

5. (10 points) Let n be a positive integer. Prove using induction that∫ 1

0
(1 − x2)n dx =

22n(n!)2

(2n + 1)!
.

Hint: Use the identity (1 − x2)n = (1 − x2)n−1 − x2(1 − x2)n−1 and integrate by parts.

Answer: We first check that the formula is correct when n = 1. We have
∫ 1

0
(1 − x2) dx = x − x3/3

∣∣∣∣1
0

= 2/3, while

22(1!)2

3!
= 4/6.

Now, assuming that
∫ 1

0
(1 − x2)k dx =

22k(k!)2

(2k + 1)!
, we have∫ 1

0
(1 − x2)k+1 dx =

∫ 1

0
(1 − x2)k dx +

∫ 1

0
x(−x)(1 − x2)k dx

=
22k(k!)2

(2k + 1)!
+

∫ 1

0
x(−x)(1 − x2)k dx

[
u = x, du = dx, dv = (−x)(1 − x2)k , v = (1 − x2)k+1/(2k + 2)

]
=

22k(k!)2

(2k + 1)!
+ x

(1 − x2)k+1

2k + 2

∣∣∣∣∣∣1
0
−

1
2k + 2

∫ 1

0
(1 − x2)k+1 dx

=
22k(k!)2

(2k + 1)!
−

1
2k + 2

∫ 1

0
(1 − x2)k+1 dx

2k + 3
2k + 2

∫ 1

0
(1 − x2)k+1 dx =

22k(k!)2

(2k + 1)!∫ 1

0
(1 − x2)k+1 dx =

(
2k + 2
2k + 3

)
22k(k!)2

(2k + 1)!
=

(
2k + 2
2k + 3

) (
2k + 2
2k + 2

)
22k(k!)2

(2k + 1)!

=
22k+2((k + 1)!)2

(2k + 3)!
.

This is the desired conclusion to establish the induction.

6. (10 points) Remember that the set µ1000 is defined by µ1000 = {z ∈ C | z1000 = 1}. Let j be a positive integer, and
define f : µ1000 → µ1000 with the formula f (x) = x j .

(a) If ( j, 1000) = 1, prove that f is a bijection.
(b) If ( j, 1000) , 1, prove that f is not a bijection.

Answer: (a) Suppose that ( j, 1000) = 1. Find integers m and n so that jm + 1000n = 1. Let g : µ1000 → µ1000 be
defined by the formula g(x) = xm. Then f (g(x)) = g( f (x)) = xm j = x1−1000n = x1(x1000)−n = x · 1−n = x. Because
f ◦ g and g ◦ f are both the identity, f is invertible, and therefore a bijection.

(b) This can be done in general, but it’s a bit more enlightening to take advantage of numerical properties of 1000.
Suppose that ( j, 1000) , 1. Because 1000 = 2353, we can conclude that either 2| j or 5| j.
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Suppose first that 2| j. In that case f (−1) = (−1) j = 1 and f (1) = 1 j = 1, so f is not an injection.
On the other hand, if 5| j, we have f (e2πi/5) = e2πi j/5 = 1 and f (1) = 1, so again we see that f is not an injection.

7. (10 points) Define a sequence {xn} with the formulas

x1 = 2

xn+1 =
√

4 + xn n ≥ 1

For example, x2 =
√

6 and x3 =

√
4 +
√

6.
Prove

(a) xn ≤ 3.
(b) xn ≤ xn+1.

Answer: (a) We proceed by induction. When n = 1, we clearly have xn ≤ 3.
If we have xk ≤ 3, then xk+1 =

√
4 + xk ≤

√
4 + 3 =

√
7 ≤ 3. That establishes the induction.

(b) We proceed by induction. We have x1 = 2 and x2 =
√

6, so x1 ≤ x2.
Now, assuming that xk ≤ xk+1, we have 4 + xk ≤ 4 + xk+1. Therefore,

√
4 + xk ≤

√
4 + xk+1, and so xk+1 ≤ xk+2,

establishing the induction.

8. (5 points) Find 3 complex numbers which solve the equation z3 = 7. Write each of those numbers in the form a + bi,
where a and b are real numbers expressed using radicals.

Answer: Write z = reiθ , so z3 = r3e3iθ . We therefore have r3 = 7, so r =
3√7. We also have e3iθ = 1, with three

possibilities:

3θ = 0
3θ = 2π
3θ = 4π

In the first case, we have θ = 0 and z =
3√7. In the second, we have θ = 2π/3, and z =

3√7e2πi/3 =
3√7(cos(2π/3) +

i sin(2π/3)) =
3√7(−1/2 + i

√
3/2). In the third case, we conclude that z =

3√7(−1/2 − i
√

3/2). The three answers are

3√
7 + 0i −

3√7
2

+ i

√
3 3√7
2

−

3√7
2
− i

√
3 3√7
2

9. (5 points) There are 9 monic quadratic polynomials in F3[x]. List all 9 of these polynomials, and indicate which are
irreducible.
Answer: To see if a quadratic polynomial is irreducible in F3[x], it suffices to see if it has any roots in F3, which can be
determined by computing f (0), f (1), and f (2). We have

Polynomial f (0) f (1) f (2) Irreducible?
x2 0 1 1 N
x2 + 1 1 2 2 Y
x2 + 2 2 0 0 N
x2 + x 0 2 0 N
x2 + x + 1 1 0 1 N
x2 + x + 2 2 1 2 Y
x2 + 2x 0 0 2 N
x2 + 2x + 1 1 1 0 N
x2 + 2x + 2 2 2 1 Y

Therefore, the irreducible polynomials are x2 + 1, x2 + x + 2, and x2 + 2x + 2.

10. (10 points) As usual, define the Fibonacci numbers by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3. Let
α = 1

2 (1 +
√

5) and β = 1
2 (1 −

√
5). You may use the facts that α2 = α + 1 and β2 = β + 1.

Prove using induction that
Fn+1 = αFn + βn

for n ≥ 1.
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Answer: We check that when n = 1, we get F2 = 1, and αF1 + β = α + β = 1. We also need to check the formula for
n = 2, and then we have F3 = 2, and αF2 + β2 = α + β + 1 = 1 + 1 = 2.

We now proceed using strong induction. We assume that the statement is true when n = k − 2 and n = k − 1, and
add:

Fk−1 = αFk−2 + βk−2

Fk = αFk−1 + βk−1

Adding yields Fk+1 = α(Fk−2 + Fk−2) + βk−2 + βk−1 = αFk + βk−2(1 + β) = αFk + βk−2 β2 = αFk + βk . This establishes
the induction.

11. (10 points) Suppose that n and k are positive integers, with n > k > 1. Prove using the definition of binomial
coefficient that (

n − 1
k − 1

) (
n

k + 1

) (
n + 1

k

)
=

(
n − 1

k

) (
n + 1
k + 1

) (
n

k − 1

)
.

Answer: We have(
n − 1
k − 1

) (
n

k + 1

) (
n + 1

k

)
=

(
(n − 1)!

(n − k)!(k − 1)!

) (
n!

(n − k − 1)!(k + 1)!

) (
(n + 1)!

(n + 1 − k)!k!

)
=

(
(n − 1)!

(n − 1 − k)!k!

) (
(n + 1)!

(n − k)!(k + 1)!

) (
n!

(k − 1)!(n + 1 − k)!

)
=

(
n − 1

k

) (
n + 1
k + 1

) (
n

k − 1

)
.

12. (10 points) Suppose that F is a field, and f (x) = xn + cn−1xn−1 + . . . + c1x + c0 ∈ F[x], with n ≥ 2. Suppose that
γ1 , γ2 , . . . , γn ∈ F are the n roots of f (x). Prove that

c0 = (−1)nγ1γ2 · · · γn

and

cn−1 = −(γ1 + γ2 + · · · + γn)

Answer: We know that f (x) = (x−γ1)(x−γ2)(x−γ3) · · · (x−γn). Substitution of x = 0 yields c0 = (−γ1)(−γ2) · · · (−γn) =

(−1)nγ1γ2 · · · γn.
We can also multiply out the factorization of f (x), and look at the coefficient of xn−1. The way to get xn−1

in the product is to have n − 1 factors of x and one factor of −γk . We conclude that the xn−1 term looks like
(−γ1 − γ2 − · · · − γn)xn−1. Because we know that the xn−1 term is also cn−1xn−1, we have cn−1 = −γ1 − γ2 − · · · − γn.

Grade Number of people
86 1
83 1
80 1
73 1
72 3
71 1
70 2
65 1
61 1
43 1

Mean: 70.62
Standard deviation: 10.29


