Mathematics 216

Robert Gross
Homework 1
Answers

1. Prove that $\sqrt{10}$ is irrational by using an even-odd argument.

Answer: Suppose that $\sqrt{10}=\frac{a}{b}$, where $\frac{a}{b}$ is in lowest terms. Squaring and cross-multiplying gives $10 b^{2}=a^{2}$. Because $10 b^{2}$ is even, we know that a^{2} is even. If a were odd, then a^{2} would be odd, so we know that a is even.

Let $a=2 c$, and then substitution yields $10 b^{2}=4 c^{2}$, or $5 b^{2}=2 c^{2}$. Now we see that $2 c^{2}$ is even, so $5 b^{2}$ is even. If b were odd, then $5 b^{2}$ would be odd, and therefore we know that b is even.

But if a and b are both even, then $\frac{a}{b}$ is not in lowest terms. This is a contradiction.
2. Prove that $\sqrt{7}$ is irrational.

Answer: Suppose that $\sqrt{7}=\frac{a}{b}$, with $\frac{a}{b}$ in lowest terms. Squaring and cross-multiplying yields $7 b^{2}=a^{2}$. If a were even, we could conclude that b is even, and vice versa. Therefore, both a and b are odd.

Let $a=2 c+1$ and $b=2 d+1$, so we have $7(2 d+1)^{2}=(2 c+1)^{2}$. This becomes $28 d^{2}+28 d+7=4 c^{2}+4 c+1$, or $6=4 c^{2}+4 x-28 d^{2}-28 d$. Division by 2 now yields $3=2 c^{2}+2 c-14 d^{2}-14 d=2\left(c^{2}+c-7 d^{2}-7 d\right)$. Now, the number 3 is odd, while the right-hand side of the equation is even, which is a contradiction. Therefore, $\sqrt{7}$ is irrational.
3. Prove that $\sqrt{90}$ is irrational without using the words "even" or "odd."

Answer: Suppose that $\sqrt{90}=\frac{a}{b}$. This is the same as $3 \sqrt{10}=\frac{a}{b}$, or $\sqrt{10}=\frac{a}{3 b}$. But we proved above that $\sqrt{10}$ is irrational, so we have arrived at a contradiction.
4. Prove that

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Answer: We proceed by induction. When $n=1$, we have $1^{2}=\frac{(1)(2)(3)}{6}$, which is true.
Now, we assume that

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6} \tag{1}
\end{equation*}
$$

and we must prove that

$$
1^{2}+2^{2}+3^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

Take (1) and add $(k+1)^{2}$ to both sides of the equation. We get

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)+6(k+1)}{6} \\
& =(k+1) \frac{2 k^{2}+7 k+6}{6}=(k+1) \frac{(2 k+3)(k+2)}{6}
\end{aligned}
$$

which is the desired result.

