Mathematics 216

Robert Gross
Homework 2
Answers

1. Prove using induction that

$$
\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}
$$

for $n \geq 0$.
Answer: When $n=0$, the left-hand side of the formula is $\sum_{k=0}^{0} x^{k}=x^{0}=1$, and the right-hand side is $\frac{x^{1}-1}{x-1}=1$, so the formula checks.

Now, suppose that we know that

$$
\sum_{k=0}^{r} x^{k}=\frac{x^{r+1}-1}{x-1}
$$

and we want to prove that

$$
\sum_{k=0}^{r+1} x^{k}=\frac{x^{r+2}-1}{x-1}
$$

We have

$$
\begin{aligned}
\sum_{k=0}^{r+1} x^{k} & =\sum_{k=0}^{r} x^{k}+x^{r+1}=\frac{x^{r+1}-1}{x-1}+x^{r+1}=\frac{x^{r+1}-1}{x-1}+\frac{x^{r+2}-x^{r+1}}{x-1} \\
& =\frac{x^{r+2}-1}{x-1}
\end{aligned}
$$

which is the desired result.
2. Find a value of N so that $n^{3}<3^{n}$ if $n \geq N$, and prove that the inequality is true by using induction.
Answer: Trial and error shows that the formula seems to be true if $n \geq 4$, so we take $N=4$. Proceeding by induction, we verify that the formula is indeed true when $n=4$. Next, we assume that $k^{3}<3^{k}$, and we need to prove that $(k+1)^{3}<3^{k+1}$, where $k \geq 4$. Note that $1+\frac{1}{k} \leq \frac{5}{4}$, and so $\left(1+\frac{1}{k}\right)^{3} \leq\left(\frac{5}{4}\right)^{3}=\frac{125}{64}<3$.

We take $k^{3}<3^{k}$, and multiply by $\left(1+\frac{1}{k}\right)^{3}<3$, and we end with $(k+1)^{3}<3 \cdot 3^{k}=3^{k+1}$.
3. Prove that $F_{n}<\left(\frac{5}{3}\right)^{n}$.

Answer: We proceed by induction. When $n=1$, we have $F_{1}=1<\frac{5}{3}$, which is true. When $n=2$, we have $F_{2}=1<\left(\frac{5}{3}\right)^{2}$, which is also true.

Now, we suppose that $F_{k}<\left(\frac{5}{3}\right)^{k}$ and $F_{k-1}<\left(\frac{5}{3}\right)^{k-1}$, and we add and use the fact that $\frac{8}{5}<\frac{5}{3}$:

$$
F_{k+1}=F_{k}+F_{k-1}<\left(\frac{5}{3}\right)^{k}+\left(\frac{5}{3}\right)^{k-1}=\left(\frac{5}{3}\right)^{k}\left(1+\frac{3}{5}\right)=\left(\frac{5}{3}\right)^{k}\left(\frac{8}{5}\right)<\left(\frac{5}{3}\right)^{k+1}
$$

