Mathematics 216 Robert Gross Homework 2 Answers

1. Prove using induction that

$$\sum_{k=0}^{n} x^{k} = \frac{x^{n+1} - 1}{x - 1}$$

for $n \geq 0$.

Answer: When n = 0, the left-hand side of the formula is $\sum_{k=0}^{0} x^{k} = x^{0} = 1$, and the right-hand

side is $\frac{x^1 - 1}{x - 1} = 1$, so the formula checks. Now, suppose that we know that

$$\sum_{k=0}^{r} x^{k} = \frac{x^{r+1} - 1}{x - 1},$$

and we want to prove that

$$\sum_{k=0}^{r+1} x^k = \frac{x^{r+2} - 1}{x - 1}$$

We have

$$\sum_{k=0}^{r+1} x^k = \sum_{k=0}^r x^k + x^{r+1} = \frac{x^{r+1} - 1}{x - 1} + x^{r+1} = \frac{x^{r+1} - 1}{x - 1} + \frac{x^{r+2} - x^{r+1}}{x - 1}$$
$$= \frac{x^{r+2} - 1}{x - 1},$$

which is the desired result.

2. Find a value of N so that $n^3 < 3^n$ if $n \ge N$, and prove that the inequality is true by using induction.

Answer: Trial and error shows that the formula seems to be true if $n \ge 4$, so we take N = 4. Proceeding by induction, we verify that the formula is indeed true when n = 4. Next, we assume that $k^3 < 3^k$, and we need to prove that $(k+1)^3 < 3^{k+1}$, where $k \ge 4$. Note that $1 + \frac{1}{k} \le \frac{5}{4}$, and so $\left(1 + \frac{1}{k}\right)^3 \le \left(\frac{5}{4}\right)^3 = \frac{125}{64} < 3$. We take $k^3 < 3^k$, and multiply by $\left(1 + \frac{1}{k}\right)^3 < 3$, and we end with $(k+1)^3 < 3 \cdot 3^k = 3^{k+1}$.

3. Prove that $F_n < \left(\frac{5}{3}\right)^n$.

Answer: We proceed by induction. When n = 1, we have $F_1 = 1 < \frac{5}{3}$, which is true. When n=2, we have $F_2=1<(\frac{5}{3})^2$, which is also true.

Now, we suppose that $F_k < (\frac{5}{3})^k$ and $F_{k-1} < (\frac{5}{3})^{k-1}$, and we add and use the fact that $\frac{8}{5} < \frac{5}{3}$:

$$F_{k+1} = F_k + F_{k-1} < \left(\frac{5}{3}\right)^k + \left(\frac{5}{3}\right)^{k-1} = \left(\frac{5}{3}\right)^k \left(1 + \frac{3}{5}\right) = \left(\frac{5}{3}\right)^k \left(\frac{8}{5}\right) < \left(\frac{5}{3}\right)^{k+1}$$