Mathematics 216
Robert Gross
Homework 3
Answers

1. Find a value of N so that $F_{n}>\left(\frac{3}{2}\right)^{n}$ if $n>N$, and then prove that the inequality is true by using induction.
Answer: Finding the value of N requires a lot of trial and error, or else the use of a computer. I compute that $F_{10}=55,\left(\frac{3}{2}\right)^{10}=\frac{59049}{1024} \approx 57.7, F_{11}=89,\left(\frac{3}{2}\right)^{11}=\frac{177147}{2048} \approx 86.5, F_{12}=144$, and $\left(\frac{3}{2}\right)^{12}=\frac{531441}{4096} \approx 129.7$.

We can be sure that $F_{11}>\left(\frac{3}{2}\right)^{11}$ and $F_{12}>\left(\frac{3}{2}\right)^{12}$. The induction proof continues by assuming that $F_{k}>\left(\frac{3}{2}\right)^{k}$ and $F_{k+1}>\left(\frac{3}{2}\right)^{k+1}$, and then adding these two inequalities yields $F_{k+2}>\left(\frac{3}{2}\right)^{k}+\left(\frac{3}{2}\right)^{k+1}=\left(\frac{3}{2}\right)^{k+1}\left(\frac{2}{3}+1\right)=\left(\frac{3}{2}\right)^{k+1}\left(\frac{5}{3}\right)>\left(\frac{3}{2}\right)^{k+1}\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{k+2}$. That concludes the induction argument.
2. Let n be a positive integer. Prove using induction (and l'Hôpital's rule) that

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{n}}{x}=0
$$

Answer: We proceed by induction. To handle the case $n=1$, we use l'Hôpital's rule:

$$
\lim _{x \rightarrow \infty} \frac{\log x}{x}=\lim _{x \rightarrow \infty} \frac{x^{-1}}{1}=\lim _{x \rightarrow \infty} x^{-1}=0
$$

Now, we assume that

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{k}}{x}=0
$$

and apply l'Hôpital's rule to

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{k+1}}{x}=\lim _{x \rightarrow \infty} \frac{(k+1)(\log x)^{k} x^{-1}}{1}=\lim _{x \rightarrow \infty} \frac{(k+1)(\log x)^{k}}{x}=\lim _{x \rightarrow \infty}(k+1) \frac{(\log x)^{k}}{x}=0 .
$$

That concludes the induction.
3. Let n be a positive integer. Prove using induction that $n^{3}+2 n$ is always a multiple of 3 . Answer: The case $n=1$ is clear. Assuming that $k^{3}+2 k$ is a multiple of 3 , we compute $(k+1)^{3}+2(k+1)=\left(k^{3}+3 k^{2}+3 k+1\right)+(2 k+2)=\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)$. This expression is a sum of two multiples of 3 , and hence is a multiple of 3 .

