Mathematics 216

Robert Gross
Homework 4
Due January 30, 2012

1. Let n be a positive integer. Prove using induction that

$$
\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0
$$

2. The Gamma function is defined by the formula

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

for $x \geq 1$. This is an improper integral, and for our purposes, you may assume that the integral converges with $x \geq 1$. Prove that $\Gamma(1)=1$.
3. Use integration by parts, along with problem 1 , to prove that $\Gamma(n+1)=n \Gamma(n)$ if n is a positive integer.
4. Prove using induction that if n is a positive integer, then $\Gamma(n)=(n-1)$!.
5. Let n be a positive integer. Show that

$$
\sum_{k=1}^{n} F_{k}=F_{n+2}-1
$$

