Mathematics 216 Robert Gross Homework 4 Due January 30, 2012

1. Let n be a positive integer. Prove using induction that

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0.$$

2. The Gamma function is defined by the formula

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt$$

for  $x \ge 1$ . This is an improper integral, and for our purposes, you may assume that the integral converges with  $x \ge 1$ . Prove that  $\Gamma(1) = 1$ .

- 3. Use integration by parts, along with problem 1, to prove that  $\Gamma(n+1) = n\Gamma(n)$  if n is a positive integer.
- 4. Prove using induction that if n is a positive integer, then  $\Gamma(n) = (n-1)!$ .
- 5. Let n be a positive integer. Show that

$$\sum_{k=1}^{n} F_k = F_{n+2} - 1.$$