Mathematics 216
Robert Gross
Homework 4
Answers

1. Let n be a positive integer. Prove using induction that

$$
\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0
$$

Answer: We first check that the statement is true for $n=1$, using l'Hôpital's rule:

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
$$

Next, we assume that

$$
\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=0
$$

and compute

$$
\lim _{x \rightarrow \infty} \frac{x^{k+1}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{(k+1) x^{k}}{e^{x}}=(k+1) \lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=(k+1)(0)=0 .
$$

That completes the induction.
2. The Gamma function is defined by the formula

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

for $x \geq 1$. This is an improper integral, and for our purposes, you may assume that the integral converges with $x \geq 1$. Prove that $\Gamma(1)=1$.
Answer: We have

$$
\left.\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=\lim _{t \rightarrow \infty}-e^{-t}\right]_{0}^{t}=1-\lim _{t \rightarrow \infty} \frac{1}{e^{t}}=1-0=0
$$

3. Use integration by parts, along with problem 1 , to prove that $\Gamma(n+1)=n \Gamma(n)$ if n is a positive integer.
Answer: For integration by parts, we set $u=t^{n}, d v=e^{-t} d t, d u=n t^{n-1}$, and $v=-e^{-t}$. We have

$$
\left.\Gamma(n+1)=\int_{0}^{\infty} t^{n} e^{-t} d t=-\frac{t^{n}}{e^{t}}\right]_{0}^{\infty}+\int_{0}^{\infty} n t^{n-1} e^{-t} d t=0+n \Gamma(n-1)
$$

Here we compute

$$
\left.-\frac{t^{n}}{e^{t}}\right]_{0}^{\infty}=-\lim _{t \rightarrow \infty} \frac{t^{n}}{e^{t}}+\frac{0^{n}}{e^{0}}=0+0=0
$$

by using problem 1.
4. Prove using induction that if n is a positive integer, then $\Gamma(n)=(n-1)$!.

Answer: We know that $\Gamma(1)=1$ and $0!=1$, so the equation is true when $n=1$.
Now, assuming that $\Gamma(k)=(k-1)$!, we compute $\Gamma(k+1)=k \Gamma(k)=k(k-1)!=k$!, which completes the induction.
5. Let n be a positive integer. Show that

$$
\sum_{k=1}^{n} F_{k}=F_{n+2}-1
$$

Answer: We proceed by induction. When $n=1$, the left-hand side of the equation is F_{1}, which is 1 , and the right-hand side is $F_{3}-1=2-1=1$. The equation is true when $n=1$.

Now, assume that

$$
\sum_{k=1}^{r} F_{k}=F_{r+2}-1
$$

We compute

$$
\sum_{k=1}^{r+1} F_{k}=\sum_{k=1}^{r} F_{k}+F_{r+1}=\left(F_{r+2}-1\right)+F_{r+1}=F_{r+3}-1 .
$$

That completes the induction.

