Mathematics 216
Robert Gross
Homework 4

Answers

1. Let n be a positive integer. Prove using induction that
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Answer: We first check that the statement is true for n = 1, using I’Hopital’s rule:
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That completes the induction.

2. The Gamma function is defined by the formula
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for x > 1. This is an improper integral, and for our purposes, you may assume that the
integral converges with = > 1. Prove that I'(1) = 1.

Answer: We have
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3. Use integration by parts, along with problem 1, to prove that I'(n + 1) = nI'(n) if n is a
positive integer.

Answer: For integration by parts, we set v = t*, dv = e~ tdt, du = nt" !, and v = —e~*. We
have
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Here we compute

by using problem 1.

4. Prove using induction that if n is a positive integer, then I'(n) = (n — 1)\

Answer: We know that I'(1) = 1 and 0! = 1, so the equation is true when n = 1.
Now, assuming that I'(k) = (k — 1)!, we compute I'(k + 1) = kI'(k) = k(k — 1)! = k!, which
completes the induction.



5. Let n be a positive integer. Show that
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Answer: We proceed by induction. When n = 1, the left-hand side of the equation is F},
which is 1, and the right-hand side is F5 —1 =2 — 1 = 1. The equation is true when n = 1.
Now, assume that
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That completes the induction.



