Mathematics 216
Robert Gross
Homework 5
Answers

1. Let n be a positive integer. Prove using induction that

$$
\lim _{x \rightarrow 0^{+}} x(\log x)^{n}=0
$$

The notation $\lim _{x \rightarrow 0^{+}}$means that x tends to 0 and is positive. The inequality $x>0$ is required because $\log x$ is only defined for positive x. Hint: Apply l'Hôpital's rule, but make sure that you do it correctly.
Answer: First, we verify that the equation holds for $n=1$:

$$
\lim _{x \rightarrow 0^{+}} x(\log x)=\lim _{x \rightarrow 0^{+}} \frac{\log x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 .
$$

Next, we assume that $\lim _{x \rightarrow 0^{+}} x(\log x)^{k}=0$, and we evaluate
$\lim _{x \rightarrow 0^{+}} x(\log x)^{k+1}=\lim _{x \rightarrow 0^{+}} \frac{(\log x)^{k+1}}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{(k+1)(\log x)^{k} x^{-1}}{-x^{-2}}=-(k+1) \lim _{x \rightarrow 0^{+}} x(\log x)^{k}=0$.
2. Use an even-odd argument to show that $\sqrt{ } 13$ is irrational. Hint: This is a bit tricky, and requires a bit more thought than our previous irrationality proofs.
Answer: Suppose that $\sqrt{13}=\frac{a}{b}$, with $\frac{a}{b}$ in lowest terms. That means that $13 b^{2}=a^{2}$, and the usual arguments show that if a were even, then b would be even, and vice versa. Therefore, we know that a and b are both odd.

Set $a=2 c+1$ and $b=2 d+1$, and we have $13\left(4 d^{2}+4 d+1\right)=4 c^{2}+4 c+1$. This becomes $52 d^{2}+52 d+13=4 c^{2}+4 c+1$. Subtract 1 from both sides of the equation, and divide by 4, and we have $13\left(d^{2}+d\right)+1=c^{2}+c$.

Finding the contradiction in this equation is subtle. The point is that $d^{2}+d=d(d+1)$, and therefore $d^{2}+d$ is the product of two consecutive integers and is always even. Hence, $13\left(d^{2}+d\right)$ is also always even, so $13\left(d^{2}+d\right)+1$ is always odd. However, $c^{2}+c=c(c+1)$ is also the product of two consecutive integers, and therefore $c^{2}+c$ is always even. This is the contradiction: the number on the left-hand side of the equals sign is odd, and the number on the right-hand side is even.
3. Find the smallest positive integer N so that $n^{3} \leq 2^{n}$ if $n \geq N$, and prove your result using induction.
Answer: A bit of experimentation shows that $9^{3}>2^{9}$, but $10^{3}<2^{10}$, so we can take $N=10$. This computation also checks the starting step of the induction.

Now, assuming that $k^{3} \leq 2^{k}$, we must prove that $(k+1)^{3} \leq 2^{k+1}$. One method is to show that $(k+1)^{3} / k^{3} \leq 2$, and then multiply by $k^{3}<2^{k}$ to get the desired result.

Here's another approach. We know that $k \geq 10$, and therefore

- $3 k+1 \leq 4 k$.
- $4 k<4 k^{2}$.
- $3 k^{2}+3 k+1<3 k^{2}+4 k^{2}=7 k^{2}<k^{3}$.
- $k^{3}+3 k^{2}+3 k+1<k^{3}+k^{3}=2 k^{3}$.

Hence $(k+1)^{3}<2 k^{3}<2\left(2^{k}\right)=2^{k+1}$.
4. Let $n>2$ be an integer. Show that

$$
F_{n} F_{n+1}-F_{n-1} F_{n+2}=(-1)^{n} .
$$

Answer: We start by checking the case $n=3$. (The equality is actually true when $n=2$ as well, but the problem accidentally specified $n>2$.) We have $F_{3} F_{4}-F_{2} F_{5}=2 \cdot 3-1 \cdot 5=1=(-1)^{3+1}$, so the equation is true when $n=3$.

Now, we assume that

$$
F_{k} F_{k+1}-F_{k-1} F_{k+2}=(-1)^{k+1}
$$

and we must prove that

$$
F_{k+1} F_{k+2}-F_{k} F_{k+3}=(-1)^{k+2}
$$

We have

$$
\begin{aligned}
F_{k+1} F_{k+2}-F_{k} F_{k+3} & =F_{k+1} F_{k+2}-F_{k}\left(F_{k+2}+F_{k+1}\right)=F_{k+2}\left(F_{k+1}-F_{k}\right)-F_{k} F_{k+1} \\
& =F_{k+2} F_{k-1}-F_{k} F_{k+1}=-\left(F_{k} F_{k+1}-F_{k+2} F_{k-1}\right)=-(-1)^{k+1}=(-1)^{k+2}
\end{aligned}
$$

That concludes the induction.

