Mathematics 216
Robert Gross
Homework 6
Answer

1. Let n be a positive integer. Prove using induction and integration by parts that

$$
\int_{0}^{1}(-\log x)^{n} d x=n!
$$

This is an improper integral, so you will need to explain how you evaluated the lower limit when applying integration by parts.
Answer: First, we deal with the case $n=1$. We have

$$
\int_{0}^{1}-\log x d x=x-\left.x \log x\right|_{0} ^{1}=1-1 \log 1-\left(0-\lim _{t \rightarrow 0^{+}} t \log t\right)=1=1!
$$

Here we used the equation $\lim _{t \rightarrow 0^{+}} t \log t=0$ computed in the last homework assignment.
Second, we assume that

$$
\int_{0}^{1}(-\log x)^{k} d x=k!
$$

and we compute

$$
\int_{0}^{1}(-\log x)^{k+1} d x=\left.x(-\log x)^{k+1}\right|_{0} ^{1}+(k+1) \int_{0}^{1}(-\log x)^{k} d x
$$

Here we have used integration by parts, with $u=(-\log x)^{k+1}, d u=-(k+1)(-\log x)^{k} x^{-1} d x$, $d v=d x$, and $v=x$.

Now,

$$
\left.x(-\log x)^{k+1}\right|_{0} ^{1}=1(-\log 1)^{k+1}-\lim _{t \rightarrow 0^{+}} t(-\log t)^{k+1}=0-0=0
$$

relying on the limit $\lim _{t \rightarrow 0^{+}} t(\log t)^{n}=0$ from the previous homework.
We now have

$$
\int_{0}^{1}(-\log x)^{k+1} d x=(k+1) \int_{0}^{1}(-\log x)^{k} d x=(k+1) k!=(k+1)!
$$

completing the induction.
2. Let m and n be positive integers, with $m \leq n$. Prove that

$$
\sum_{k=m}^{n}\binom{k}{m}=\binom{n+1}{m+1}
$$

Answer: We proceed by induction on n. The case $n=m$ produces the equation $\binom{m}{m}=$ $\binom{m+1}{m+1}$, which is true because both sides are equal to 1 .
Second, we assume that

$$
\sum_{k=m}^{p}\binom{k}{m}=\binom{p+1}{m+1}
$$

and we compute

$$
\sum_{k=m}^{p+1}\binom{k}{m}=\sum_{k=m}^{p}\binom{k}{m}+\binom{p+1}{m}=\binom{p+1}{m+1}+\binom{p+1}{m}=\binom{p+2}{m+1}
$$

which establishes the induction.
3. Let a and b be positive numbers, with $b>1$. Prove that

$$
F_{a} F_{b-1}+F_{a+1} F_{b}=F_{a+b} .
$$

Answer: We proceed by induction on a. When $a=1$, we have to verify the equation

$$
F_{1} F_{b-1}+F_{2} F_{b}=F_{b+1} .
$$

Because $F_{1}=F_{2}=1$, this is just the equation $F_{b-1}+F_{b}=F_{b+1}$, which is part of the definition of the Fibonacci numbers.

We will need 2 assumptions for the proof to proceed, so we also need to verify the assertion when $a=1$. That equation is

$$
F_{2} F_{b-1}+F_{3} F_{b}=F_{b+2}
$$

We expand the left-hand side, and get $F_{b-1}+2 F_{b}=\left(F_{b-1}+F_{b}\right)+F_{b}=F_{b+1}+F_{b}=F_{b+2}$, thereby verifying the equation when $a=2$.

The actual induction is now quite easy. We assume that the statement is true when $a=k-1$ and when $a=k$, and add the two assumptions together:

$$
\begin{aligned}
& F_{k-1} F_{b-1}+F_{k} F_{b}=F_{k-1+b} \\
& F_{k} F_{b-1}+F_{k+1} F_{b}=F_{k+b}
\end{aligned}
$$

Now, adding these two equations yields on the left-hand side $\left(F_{k-1} F_{b-1}+F_{k} F_{b-1}\right)+\left(F_{k} F_{b}+\right.$ $\left.F_{k+1} F_{b}\right)=\left(F_{k-1}+F_{k}\right) F_{b-1}+\left(F_{k}+F_{k+1}\right) F_{b}=F_{k+1} F_{b-1}+F_{k+2} F_{b}$, and on the right-hand side we get $F_{k+b-1}+F_{k+b}=F_{k+b+1}$. This means that we have proven $F_{k+1} F_{b-1}+F_{k+2} F_{b}=F_{k+b+1}$, and that in turn is the desired result when $a=k+1$.

