Mathematics 216
Robert Gross
Homework 7
Due February 6, 2012

1. If $f(x)$ is a function of x, write $f^{(n)}$ to refer to the nth derivative of f with respect to x. If, for example, $f(x)=\sin x$, then $f^{(5)}(x)=\cos x$ and $f^{(6)}(x)=-\sin x$. We define $f^{(0)}(x)$ to be $f(x)$.

Suppose that $u(x)$ and $v(x)$ are functions of x. To save space, we will just write u and v rather than $u(x)$ and $v(x)$. Suppose that n is a positive integer. Prove that

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(k)} v^{(n-k)} .
$$

In other words, you will prove that

$$
\frac{d^{n}}{d x^{n}}(u v)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{d^{k} u}{d x^{k}}\right)\left(\frac{d^{n-k} v}{d x^{n-k}}\right) .
$$

Hint: Proceed as in the proof of the binomial theorem.
2. Use the previous formula to compute $\frac{d^{7}}{d x^{7}}\left(x^{2} e^{3 x}\right)$.
3. Let n be a positive integer. Show that

$$
\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}
$$

