Mathematics 216
Robert Gross
Homework 7
Answers

1. If $f(x)$ is a function of x, write $f^{(n)}$ to refer to the nth derivative of f with respect to x. If, for example, $f(x)=\sin x$, then $f^{(5)}(x)=\cos x$ and $f^{(6)}(x)=-\sin x$. We define $f^{(0)}(x)$ to be $f(x)$.

Suppose that $u(x)$ and $v(x)$ are functions of x. To save space, we will just write u and v rather than $u(x)$ and $v(x)$. Suppose that n is a positive integer. Prove that

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(k)} v^{(n-k)}
$$

In other words, you will prove that

$$
\frac{d^{n}}{d x^{n}}(u v)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{d^{k} u}{d x^{k}}\right)\left(\frac{d^{n-k} v}{d x^{n-k}}\right) .
$$

Hint: Proceed as in the proof of the binomial theorem.
Answer: We proceed by induction. When $n=1$, the left-hand side of the formula is $(u v)^{\prime}$, and the right-hand side is $u v^{\prime}+u^{\prime} v$. The product rule tells us that $(u v)^{\prime}=u v^{\prime}+u^{\prime} v$, so the the formula is true when $n=1$.

Now, we assume that

$$
(u v)^{(p)}=\sum_{k=0}^{p}\binom{p}{k} u^{(k)} v^{(p-k)}
$$

Differentiating both sides of the equation and then re-arranging yields:

$$
\begin{aligned}
(u v)^{p+1} & =\sum_{k=0}^{p} \frac{d}{d x}\left(\binom{p}{k} u^{(k)} v^{(p-k)}\right)=\sum_{k=0}^{p}\binom{p}{k}\left(u^{(k+1)} v^{(p-k)}+u^{(k)} v^{(p-k+1)}\right) \\
& =\sum_{k=0}^{p}\binom{p}{k} u^{(k+1)} v^{(p-k)}+\sum_{k=0}^{p}\binom{p}{k} u^{(k)} v^{(p-k+1)} \\
& =u^{(p+1)} v^{(0)}+\sum_{k=0}^{p-1}\binom{p}{k} u^{(k+1)} v^{(p-k)}+\sum_{k=1}^{p}\binom{p}{k} u^{(k)} v^{(p-k+1)}+u^{(0)} v^{(p+1)}
\end{aligned}
$$

[Re-index the first sum, using $k=t-1 ; t=k+1$:]

$$
\begin{aligned}
& =u^{(p+1)} v^{(0)}+\sum_{t=1}^{p}\binom{p}{t-1} u^{(t)} v^{(p+1-t)}+\sum_{k=1}^{p}\binom{p}{k} u^{(k)} v^{(p+1-k)}+u^{(0)} v^{(p+1)} \\
& =u^{(p+1)} v^{(0)}+\sum_{r=1}^{p}\left(\binom{p}{r-1}+\binom{p}{r}\right) u^{(t)} v^{(p+1-t)}+u^{(0)} v^{(p+1)} \\
& =u^{(p+1)} v^{(0)}+\sum_{r=1}^{p}\binom{p+1}{r} u^{(t)} v^{(p+1-t)}+u^{(0)} v^{(p+1)} \\
& =\sum_{r=0}^{p+1}\binom{p+1}{r} u^{(t)} v^{(p+1-t)} .
\end{aligned}
$$

2. Use the previous formula to compute $\frac{d^{7}}{d x^{7}}\left(x^{2} e^{3 x}\right)$.

Answer: We write $u=x^{2}, u^{\prime}=2 x, u^{\prime \prime}=2$, and $u^{(k)}=0$ if $k \geq 3$. We also have $v=e^{3 x}$, $v^{\prime}=3 e^{3 x}, v^{\prime \prime}=3^{2} e^{3 x}$, and in general $v^{(k)}=3^{k} e^{3 x}$. The previous problem now tells us that

$$
\begin{aligned}
\frac{d^{7}}{d x^{7}}\left(x^{2} e^{3 x}\right) & =\binom{7}{0} u v^{(7)}+\binom{7}{1} u^{\prime} v^{(6)}+\binom{7}{2} u^{\prime \prime} v^{(5)} \\
& =x^{2} \cdot 3^{7} e^{3 x}+7(2 x) \cdot 3^{6} e^{3 x}+21(2) \cdot 3^{5} e^{3 x} \\
& =\left(3^{7} x^{2}+14 \cdot 3^{6} x+14 \cdot 3^{6}\right) e^{3 x}
\end{aligned}
$$

3. Let n be a positive integer. Show that

$$
\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}
$$

Answer: We check first that the equation is true when $n=1$. The sum gives $F_{1}^{2}=1$, and the right-hand side of the equation is $F_{1} F_{2}=1 \cdot 1=1$.

Now, we assume that the result is true when $n=r$, and we compute

$$
\sum_{k=1}^{r+1} F_{k}^{2}=\sum_{k=1}^{r} F_{k}^{2}+F_{r+1}^{2}=F_{r} F_{r+1}+F_{r+1}^{2}=F_{r+1}\left(F_{r}+F_{r+1}\right)=F_{r+1} F_{r+2}
$$

That concludes the induction.

