Mathematics 216

Robert Gross
Homework 8
Due February 8, 2012

1. Let n be an integer which is at least 2 . Use integration by parts to derive the formula

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

2. Let n be an integer which is at least 1 . Use induction and the previous problem to prove that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2 n+1} x d x=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}
$$

3. Let n be a positive integer. Prove that $\binom{2 n}{n}$ is always even.
