Mathematics 216
Robert Gross
Homework 8

Answers

1. Let n be an integer which is at least 2. Use integration by parts to derive the formula

1 n—1
/cos" rdr = —cos" 'rsinz + /cos"_2 T dzx.
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Answer: To integrate by parts, we set u = cos" ' x, du = —(n — 1) cos" * rsinx dzr, dv =

cosx dx, and v = sinx. We get

/cos”a:d:c:cos xsinz + (n—1 cos" 2 rsin? x dx

= cos" ! rsinz —|— -1
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= cos" T xsinz + ( 1)/(: x(1 — cos® x) dx
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n [ cos” xdr = cos" txsinz + (n—1 /COS xdr

cos" txsinx n-—1 _
/cos”xdx = + /cos” 2 rdr.
n n

2. Let n be an integer which is at least 1. Use induction and the previous problem to prove

that
22”(71!)2

(2n+ 1)1
Answer: We start by verifying the formula when n = 1. We compute, using the previous
problem, that
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The left-hand side of the formula gives s 63
Now, assuming that '
£ 22p ! 2
/ cos xdr = 7@ ) ,
0 (2p+ 1)!

we compute
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That concludes the induction.
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3. Let n be a positive integer. Prove that ( ) is always even.
n
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Answer: We know that "o (" ] + " . However, symmetry tells us that
n n— n
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( " ) = ( n ) Therefore, ( n) = 2( " ), showing that ( n> is even.
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