Mathematics 216
Robert Gross
Homework 9
Answers

1. Let n be an integer which is at least 1. Use induction and the previous homework to prove that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x=\left(\frac{(2 n-1)!}{2^{2 n-1} n!(n-1)!}\right)\left(\frac{\pi}{2}\right) .
$$

Answer: We saw on the last homework that

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

Therefore,

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x=\left.\frac{1}{2} \cos x \sin x\right|_{0} ^{\frac{\pi}{2}}+\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 d x=\left(\frac{1}{2}\right)\left(\frac{\pi}{2}\right)=\frac{\pi}{4}
$$

When we substitute $n=1$ into the right-hand side of the formula, we get $\left(\frac{1!}{2 \cdot 1!0!}\right)\left(\frac{\pi}{2}\right)=\frac{\pi}{4}$, verifying the formula when $n=1$.

Now, assuming that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{2 k} x d x=\left(\frac{(2 k-1)!}{2^{2 k-1} k!(k-1)!}\right)\left(\frac{\pi}{2}\right),
$$

we compute

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos ^{2 k+2} x d x & =\left.\frac{1}{2 k+2} \cos ^{2 k+1} x \sin x\right|_{0} ^{\frac{\pi}{2}}+\frac{2 k+1}{2 k+2} \int_{0}^{\frac{\pi}{2}} \cos ^{2 k} x d x \\
& =0+\frac{2 k+1}{2 k+2}\left(\frac{(2 k-1)!}{2^{2 k-1} k!(k-1)!}\right)\left(\frac{\pi}{2}\right) \\
& =\left(\frac{2 k+1}{2 k+2}\right)\left(\frac{2 k}{2 k}\right)\left(\frac{(2 k-1)!}{2^{2 k-1} k!(k-1)!}\right)\left(\frac{\pi}{2}\right) \\
& =\frac{(2 k+1)!}{2^{2 k+1}(k+1)(k) k!(k-1)!}=\frac{(2 k+1)!}{2^{2 k+1}(k+1)!(k)}
\end{aligned}
$$

which completes the induction.
2. Find three different complex numbers which solve the equation $z^{3}=i$. Express each of the complex numbers in the form $a+b i$, where a and b are real numbers.
Answer: We write $z=\cos \theta+i \sin \theta$, so $z^{3}=\cos 3 \theta+i \sin 3 \theta$, and we need to have $\sin 3 \theta=1$. One possibility is $3 \theta=\frac{\pi}{2}$, in which case $\theta=\frac{\pi}{6}$, and $z=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2}+i \frac{1}{2}$.

Another possibility is $3 \theta=\frac{5 \pi}{2}$. Then $\theta=\frac{5 \pi}{6}$, and $z=-\frac{\sqrt{3}}{2}+i \frac{1}{2}$.
The third possibility is $3 \theta=\frac{9 \pi}{2}$. Then $\theta=\frac{9 \pi}{6}=\frac{3 \pi}{2}$, and $z=-i$.
3. Let n be a positive integer, and α any non-negative real number. Prove by induction that

$$
(1+\alpha)^{n} \geq 1+n \alpha+\frac{n(n-1)}{2} \alpha^{2} .
$$

Be sure in your proof to indicate where you used the fact that $\alpha \geq 0$, because the result is false if α is negative.
Answer: The case $n=1$ is the inequality

$$
(1+\alpha) \geq 1+\alpha+\frac{1 \cdot 0}{2} \alpha^{2}=1+\alpha .
$$

Therefore, the result is true when $n=1$.
Assuming now that

$$
(1+\alpha)^{k} \geq 1+k \alpha+\frac{k(k-1)}{2} \alpha^{2}
$$

we get

$$
\begin{aligned}
(1+\alpha)^{k+1} & =(1+\alpha)(1+\alpha)^{k} \geq(1+\alpha)\left(1+k \alpha+\frac{k(k-1)}{2} \alpha^{2}\right) \\
& =\left(1+k \alpha+\frac{k(k-1)}{2} \alpha^{2}\right)+\left(\alpha+k \alpha^{2}+\frac{k(k-1)}{2} \alpha^{3}\right) \\
& =1+(k+1) \alpha+\alpha^{2}\left(\frac{k(k-1)}{2}+k\right)+\frac{k(k-1)}{2} \alpha^{3} \\
& \geq 1+(k+1) \alpha+\alpha^{2}\left(\frac{k(k-1)}{2}+k\right) \\
& =1+(k+1) \alpha+\alpha^{2}\left(\frac{(k+1) k}{2}\right)
\end{aligned}
$$

which establishes the induction.

