Mathematics 216
Robert Gross
Homework 11
Answers

1. Use the Euclidean algorithm to compute the greatest common divisor d of 3780 and 4342, and find integers m and n so that $d=3780 m+4342 n$.
Answer: We have

$$
\begin{array}{rlrl}
4342 & =1 \cdot & 3780+562 \\
3780 & =6 \cdot & 562+408 \\
562 & =1 \cdot & 408+154 \\
408 & =2 \cdot & & 154+100 \\
154 & =1 \cdot & r 00+54 \\
100 & =1 \cdot & 54+46 \\
54 & =1 \cdot & 46+ & 8 \\
46 & =5 \cdot & 8+ & 6 \\
8 & =1 \cdot & 6+ & 2 \\
6 & =3 \cdot & 2
\end{array}
$$

Therefore, the greatest common divisor is 2 , and we have

$$
\begin{array}{rlrl}
2 & =1 \cdot 8 & & +(-1)(6) \\
& =1 \cdot 8 & & +(-1)(46-5 \cdot 8) \\
& =6 \cdot 8 & & +(-1)(46) \\
& =6 \cdot(54-46) & & +(-1)(46) \\
& =6 \cdot 54 & & +(-7)(46) \\
& =6 \cdot 54 & & +(-7)(100-54) \\
& =13 \cdot 54 & & +(-7)(100) \\
& =13 \cdot(154-100) & & +(-7)(100) \\
& =13 \cdot 154 & & +(-20)(100) \\
& =53 \cdot 154 & & +(-20)(408-2 \cdot 154) \\
& =53 \cdot(562-408) & & +(-20)(408) \\
& =53 \cdot 562 & & +(-73)(408) \\
& =53 \cdot 562 & & +(-73)(3780-6 \cdot 562) \\
& =491 \cdot 562 & & +(-73)(3780) \\
& =491 \cdot(4342-3780) & +(-73)(3780) \\
& =491 \cdot 4342 & & +(-564)(3780)
\end{array}
$$

One answer is $m=-564$ and $n=491$.
2. Recall that we defined the Fermat numbers f_{n} with the formula $f_{n}=2^{2^{n}}+1$ if $n \geq 0$, and proved that $f_{0} f_{1} f_{2} \cdots f_{n}+2=f_{n+1}$. Use this formula to show that if $m<n$, then f_{m} and f_{n} are relatively prime.
Answer: We know from the formula that $f_{0} f_{1} \cdots f_{n-1}+2=f_{n}$. Because $m<n$, we know that f_{m} occurs in the product on the left-hand side of the equation. Suppose now that d is a positive number which divides both f_{m} and f_{n}. Then the equation says that $d \mid 2$, and so $d=1$ or $d=2$. But all of the Fermat numbers are odd, so we cannot have $d=2$. As a consequence, the only positive divisor of f_{m} and f_{n} is 1 , showing that $\left(f_{m}, f_{n}\right)=1$.

