Mathematics 216
Robert Gross
Homework 12
Answers

1. Suppose that $c$ and $d$ are positive integers. Prove using induction that $F_{c} \mid F_{c d}$. The formula $F_{a} F_{b-1}+F_{a+1} F_{b}=F_{a+b}$ might be helpful.
Answer: We proceed using induction on $d$. The case $d=1$ is clear, because the statement $F_{c} \mid F_{c}$ is trivially true.

Assume that $F_{c} \mid F_{c k}$. We need to prove that $F_{c} \mid F_{c(k+1)}$. Take the given formula, and substitute $c$ for $a$ and $c k$ for $b$. We get $F_{c} F_{c k-1}+F_{c+1} F_{c k}=F_{c k+c}$. Now, we know that $F_{c} \mid F_{c} F_{c k-1}$, and by assumption $F_{c} \mid F_{c+1} F_{c k}$. Therefore, $F_{c} \mid F_{c k+c}$ establishing the induction.
2. Suppose that $a$ and $b$ are positive integers, with $d=(a, b)$. Suppose that we have used the Euclidean algorithm to determine integers $x$ and $y$ so that $a x+b y=d$. Prove that $x$ and $y$ are relatively prime.
Answer: We know that $d \mid a$ and $d \mid b$. We can take the given equation, and divide through by $d$, yielding $\frac{a}{d} \cdot x+\frac{b}{d} \cdot y=1$, where both $\frac{a}{d}$ and $\frac{b}{d}$ are integers. Suppose that $k \mid x$ and $k \mid y$, and $k$ is a positive integer. We can conclude that $k \mid 1$, meaning that $k=1$. Therefore, the only positive integer dividing both $x$ and $y$ is 1 , so $(x, y)=1$.
3. Suppose that $n$ and $k$ are positive integers. Prove that

$$
\binom{n}{k}=\frac{n}{k} \cdot\binom{n-1}{k-1} .
$$

Answer: Start with the right-hand side of the equation:

$$
\frac{n}{k} \cdot\binom{n-1}{k-1}=\frac{n}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!}=\frac{n!}{k!(n-k)!}=\binom{n}{k} .
$$

4. Let $n$ be a positive integer. Prove that $\binom{3 n}{n}$ is always a multiple of 3 .

Answer: We have

$$
\binom{3 n}{n}=\frac{3 n}{n} \cdot\binom{3 n-1}{n-1}=3 \cdot\binom{3 n-1}{n-1}
$$

We know that $\binom{3 n-1}{n-1}$ is an integer, and therefore $\binom{3 n}{n}$ is a multiple of 3 .

