Mathematics 216
Robert Gross
Homework 13
Answers

1. Suppose that a, b, and c are positive integers, where $a|c, b| c$, and $(a, b)=1$. Prove that $a b \mid c$.
Answer: Find integers x and y so that $a x+b y=1$. Multiply by c, and we have $a c x+b c y=c$. Now, we know that $a \mid a$ and $b \mid c$, so $a b \mid a c x$. Similarly, we know that $b \mid b$ and $a \mid c$, so $a b \mid b c y$. Therefore, $a b \mid c$.
2. Let n be a nonnegative integer, and a any positive real number. Prove that

$$
\int_{0}^{1} x^{a}(\log x)^{n} d x=\frac{(-1)^{n} n!}{(a+1)^{n+1}}
$$

Answer: We proceed by induction. Because we are given that n is a nonnegative integer, we can begin by checking the equation when $n=0$:

$$
\int_{0}^{1} x^{a} d x=\frac{1}{a+1}=\frac{(-1)^{0} 0!}{(a+1)^{0+1}}
$$

Now, suppose that

$$
\int_{0}^{1} x^{a}(\log x)^{k} d x=\frac{(-1)^{k} k!}{(a+1)^{k+1}}
$$

We compute the next integral using integration by parts, setting $d v=x^{a} d x, v=x^{a+1} /(a+1)$, $u=(\log x)^{k+1}$, and $d u=(k+1)(\log x)^{k} / x d x$:

$$
\begin{aligned}
\int_{0}^{1} x^{a}(\log x)^{k+1} d x & =\left.(\log x)^{k+1}\left(\frac{x^{a+1}}{a+1}\right)\right|_{0} ^{1}-\int_{0}^{1}\left(\frac{x^{a+1}}{a+1}\right)(k+1)\left(\frac{(\log x)^{k}}{x}\right) d x \\
& =0-\frac{1}{a+1} \lim _{x \rightarrow 0^{+}}(\log x)^{k+1} x^{a+1}-\frac{k+1}{a+1} \int_{0}^{1} x^{a}(\log x)^{k} d x \\
& =0-0-\frac{k+1}{a+1}\left(\frac{(-1)^{k} k!}{(a+1)^{k+1}}\right)=\frac{(-1)^{k+1}(k+1)!}{(a+1)^{k+2}}
\end{aligned}
$$

We evaluate

$$
\lim _{x \rightarrow 0^{+}}(\log x)^{k+1} x^{a+1}=\lim _{x \rightarrow 0^{+}}(\log x)^{k+1} x \lim _{x \rightarrow 0^{+}} x^{a}=0 \cdot 0=0
$$

using the previously proved fact (homework 5) that $\lim _{x \rightarrow 0^{+}} x(\log x)^{n}=0$ for any positive integer n.
3. Suppose that a and b are complex numbers. Prove that

$$
|a-b| \geq|a|-|b|
$$

by using the triangle inequality.
Answer: The triangle inequality states that $|z+w| \leq|z|+|w|$. Substitute $z=a-b$ and $w=b$, and we get $|a| \leq|a-b|+|b|$. Subtract $|b|$ from both sides of the inequality, and we have the desired result.

