Mathematics 216
Robert Gross
Homework 14
Answers

1. Suppose that a and b are roots of unity. Suppose that $o(a)=m, o(b)=n$, and $(m, n)=1$. Prove that $o(a b)=m n$.
Answer: It is easy to check that $(a b)^{m n}=a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=1^{n} 1^{m}=1$. That shows that $o(a b) \leq m n$. It is harder to show that in fact the order of $a b$ is exactly $m n$.

Suppose that $(a b)^{k}=1$, with $k>0$. We need to show that $k \geq m n$. Start by taking the equation and raising to the m th power. We get $(a b)^{k m}=1^{m}=1$. But $(a b)^{k m}=a^{k m} b^{k m}=$ $\left(a^{m}\right)^{k} b^{k m}=b^{k m}$. So we know that $b^{k m}=1$, and hence can conclude that $o(b) \mid k m$. In other words, $n \mid k m$. We are given that $(n, m)=1$, and therefore we know that $n \mid k$.

Similarly, take $(a b)^{k}=1$ and raise to the nth power. We get $a^{k n} b^{k n}=1$. Because $b^{n}=1$, we know that $a^{k n}=1$. That tells us that $o(a) \mid k n$, and because $(m, n)=1$, we know that $m \mid k$.

We now have three pieces of information: $m|k, n| k$, and $(m, n)=1$. That is exactly the situation in which a homework problem tells us that $m n \mid k$, and therefore $k \geq m n$.
2. Find an explicit numerical example in which a and b are roots of unity with $o(a)=m$, $o(b)=n,(m, n) \neq 1$, and the order of $a b$ is less than both m and n.
Answer: The simplest example is probably to let $a=e^{2 \pi i / 6}$, so that $o(a)=6$, and $b=a^{2}$, so that $o(b)=3$. Then $o(a b)=o\left(a^{3}\right)=2$, and $2<3$ and $2<6$.
3. Prove that $A \cap B=B$ if and only if $B \subseteq A$.

Answer: Suppose first that $A \cap B=B$. We need to prove that $B \subseteq A$. Let $b \in B$; we need to conclude that $b \in A$. Because $B=A \cap B$, we know that $b \in A \cap B$. By definition, $A \cap B$ consists of elements in both A and B, and therefore $b \in A$.

Now, suppose that $B \subseteq A$. We need to prove that $A \cap B=B$. We know that $A \cap B \subseteq B$, so we need only prove that $B \subseteq A \cap B$. Take an element $b \in B$. Because $B \subseteq A$, we know that $b \in A$. Therefore $b \in A \cap B$. This shows that $B \subseteq A \cap B$.

