Mathematics 216
Robert Gross
Homework 15
Answers

1. Suppose that m and k are nonnegative integers. Prove that

$$
\int_{0}^{1} x^{k}(1-x)^{m} d x=\frac{m!k!}{(m+k+1)!} .
$$

Answer: Let's do this using induction on m. When $m=0$, and k is arbitrary, we see that

$$
\int_{0}^{1} x^{k}(1-x)^{0} d x=\int_{0}^{1} x^{k} d x=\frac{1}{k+1}=\frac{0!k!}{(k+1)!}
$$

Now, assuming that

$$
\int_{0}^{1} x^{k}(1-x)^{p} d x=\frac{p!k!}{(p+k+1)!}
$$

for all non-negative values of k, we use integration by parts, with $u=(1-x)^{p+1}$, $d u=$ $-(p+1)(1-x)^{p} d x, d v=x^{k} d x$ and $v=x^{k+1} /(k+1)$, to compute

$$
\begin{aligned}
\int_{0}^{1} x^{k}(1-x)^{p+1} d x & =\left.(1-x)^{p+1} \frac{x^{k+1}}{k+1}\right|_{0} ^{1}+\int_{0}^{1}(p+1)(1-x)^{p} \frac{x^{k+1}}{k+1} d x \\
& =0+\frac{p+1}{k+1} \int_{0}^{1} x^{k+1}(1-x)^{p} d x \\
& =\frac{p+1}{k+1} \cdot \frac{p!(k+1)!}{(p+k+2)!}=\frac{(p+1) p!k!}{(p+k+2)!}=\frac{(p+1)!k!}{(p+k+2)!}
\end{aligned}
$$

That concludes the induction.
2. Prove or give a counterexample:

$$
\text { If } A, B \text {, and } C \text { are sets, then } A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)
$$

Answer: This statement is true. One way to prove it is to use the following identities:

- $B \backslash C=B \cap C^{c}$.
- de Morgan's Law: $(X \cap Y)^{c}=X^{c} \cup Y^{c}$.
- distributivity: $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)$.
- $X \cap X^{c}=\emptyset$.
- $X \cap \emptyset=\emptyset$.
- $X \cup \emptyset=X$.

We have

$$
\begin{aligned}
(A \cap B) \backslash(A \cap C) & =(A \cap B) \cap(A \cap C)^{c}=(A \cap B) \cap\left(A^{c} \cup C^{c}\right) \\
& =\left[(A \cap B) \cap A^{c}\right] \cup\left(A \cap B \cap C^{c}\right) \\
& =[\emptyset \cap B] \cup\left(A \cap B \cap C^{c}\right)=\emptyset \cup\left(A \cap B \cap C^{c}\right)=A \cap\left(B \cap C^{c}\right) \\
& =A \cap(B \backslash C) .
\end{aligned}
$$

3. Suppose that n and k are positive integers, with $k \geq 2$. Prove that

$$
(k-1)\binom{n k-1}{n-1}=\binom{n k-1}{n} .
$$

Answer: We have

$$
\begin{aligned}
\frac{\binom{n k-1}{n}}{\binom{n k-1}{n-1}} & =\frac{(n k-1)!/ n!(n k-n-1)!}{(n k-1)!/(n-1)!(n k-n)!}=\frac{(n-1)!(n k-n)!}{n!(n k-n-1)!} \\
& =\frac{(n-1)!}{n!} \cdot \frac{(n k-n)!}{(n k-n-1)!}=\frac{1}{n} \cdot \frac{n k-n}{1}=k-1 .
\end{aligned}
$$

