Mathematics 216
Robert Gross
Homework 15

Answers

1. Suppose that m and k are nonnegative integers. Prove that
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Answer: Let’s do this using induction on m. When m = 0, and k is arbitrary, we see that

1 1 1 0lk!
“Q-a)lde = [ atde = = .
/Ox( x)" dx T = Gt 1)

Now, assuming that
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for all non-negative values of k, we use integration by parts, with v = (1 — )™, du =
—(p+1)(1 — z2)Pdx, dv = 2*dz and v = ¥ /(k + 1), to compute
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That concludes the induction.

2. Prove or give a counterexample:

If A, B, and C are sets, then AN (B\C)=(ANB)\ (ANC).

Answer: This statement is true. One way to prove it is to use the following identities:
e B\C=BncC-.
e de Morgan’s Law: (X NY)* = X°UuY"
e distributivity: XN(YUZ)=(XNY)u(XNZ).

e X NX¢=1.

e XNO=10.

e XUD=X.
We have

(ANB)\ (ANC)=(ANnB)N(ANC)=(ANB)N(A°UC")

[(ANB)NAJU(ANBNCY)

[ BJU(ANBNC)=0U(ANBNC%) =AN(BNC°
N(B\C).



3. Suppose that n and k are positive integers, with k£ > 2. Prove that
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