Mathematics 216
Robert Gross
Homework 16
Answers

1. Prove or give a counterexample:

If A, B, and C are sets, then $A \backslash(B \cup C)=(A \backslash B) \cup(A \backslash C)$.
Answer: This statement is false. Let $A=B=\{1\}$ and $C=\emptyset$. Then $A \backslash(B \cup C)=$ $\{1\} \backslash\{1\}=\emptyset$, while $(A \backslash B) \cup(A \backslash C)=(\{1\} \backslash\{1\}) \cup(\{1\} \backslash \emptyset)=\emptyset \cup\{1\}=\{1\}$.
2. Suppose that $f: A \rightarrow A$ is defined by $f(x)=x^{3}$, where A is a subset of the complex numbers. Give examples of a set A so that
(a) f is bijective.
(b) f is injective but not surjective.
(c) f is surjective but not injective.
(d) f is neither injective nor surjective.

Answer: (a) Let $A=\{1\}$.
(b) Let $A=\mathbf{Z}$. We know that if m and n are integers and $m \neq n$, then $m^{3} \neq n^{3}$, because this is in fact true if m and n are unequal real numbers. On the other hand, there is no solution in \mathbf{Z} to $f(x)=2$.
(c) One answer is to let $A=\mathbf{C}$. We know that $f\left(e^{2 \pi i / 3}\right)=1=f(1)$, so f is not injective. However, we also know that every complex number has a cube root, so f is surjective.
(d) One answer is $A=\left\{e^{2 \pi i / 3}, e^{4 \pi i / 3}, 1\right\}$, so that $f\left(e^{2 \pi i / 3}\right)=f\left(e^{4 \pi i / 3}\right)=f(1)=1$.
3. Show that

$$
(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)
$$

Answer: Using $X \backslash Y=X \cap Y^{c}$ and de Morgan's law, we have

$$
\begin{aligned}
(A \backslash B) \cup(B \backslash A) & =\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right) \\
& =(A \cup B) \cap\left(A \cup A^{c}\right) \cap\left(B^{c} \cup B\right) \cap\left(B^{c} \cup A^{c}\right) \\
& =(A \cup B) \cap\left(B^{c} \cup A^{c}\right) \\
& =(A \cup B) \cap(A \cap B)^{c} \\
& =(A \cup B) \backslash(A \cap B) .
\end{aligned}
$$

