Mathematics 216
Robert Gross
Homework 17
Due March 12, 2012

1. Find sets A and B and functions $f: A \rightarrow B$ and $g: B \rightarrow A$ so that f is not a bijection, g is not a bijection, and $f \circ g$ is a bijection.
2. Define $f: \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ with the formula $f(x)=\left(x^{2}, \sin (x)\right)$.
(a) Is f an injection?
(b) Is f a surjection?
3. Let $\mu_{7}=\left\{\alpha \in \mathbf{C}: \alpha^{7}=1\right\}$. Define $f: \mu_{7} \rightarrow \mu_{7}$ with the formula $f(\alpha)=\alpha^{2}$. Is the function f injective, surjective, both, or neither?
4. Now set $\mu_{12}=\left\{\alpha \in \mathbf{C}: \alpha^{12}=1\right\}$. Define $g: \mu_{12} \rightarrow \mu_{12}$ with the formula $g(\alpha)=\alpha^{2}$. Is the function g injective, surjective, both, or neither?
5. Define a new set operation $A \triangle B$ with the formula

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

On the last homework, we saw that $A \triangle B=(A \cup B) \backslash(A \cap B)$. This operation is sometimes called the symmetric difference of the sets A and B.
(a) Show that $A \triangle B=B \triangle A$.
(b) Show that $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.

