Mathematics 216
Robert Gross
Homework 17
Answers

1. Find sets A and B and functions $f: A \rightarrow B$ and $g: B \rightarrow A$ so that f is not a bijection, g is not a bijection, and $f \circ g$ is a bijection.
Answer: One possibility is to set $A=\{1,2\}$ and $B=\{1\}$. Define $g(1)=1$, and $f(1)=$ $f(2)=1$. Then f is not an injection, g is not a surjection, but $f \circ g(1)=1$.
2. Define $f: \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}$ with the formula $f(x)=\left(x^{2}, \sin (x)\right)$.
(a) Is f an injection?
(b) Is f a surjection?

Answer: The function f is not an injection, because $f(-\pi)=\left((-\pi)^{2}, \sin (-\pi)\right)=\left(\pi^{2}, \sin (\pi)\right)=$ $f(\pi)$. The function f is not a surjection. There is no solution of $f(x)=(3,4)$, because there is no solution of $\sin x=4$ with $x \in \mathbf{R}$.
3. Let $\mu_{7}=\left\{\alpha \in \mathbf{C}: \alpha^{7}=1\right\}$. Define $f: \mu_{7} \rightarrow \mu_{7}$ with the formula $f(\alpha)=\alpha^{2}$. Is the function f injective, surjective, both, or neither?
Answer: The easiest way to see that f is a bijection is to consider the function $h(\alpha)=\alpha^{4}$. Then $f\left(h\left(\alpha^{k}\right)\right)=f\left(\alpha^{4 k}\right)=\alpha^{8 k}=\left(\alpha^{8}\right)^{k}=\alpha^{k}$, and similarly $h\left(f\left(\alpha^{k}\right)\right)=h\left(\alpha^{2 k}\right)=\alpha^{8 k}=\left(\alpha^{8}\right)^{k}=\alpha^{k}$. Because $f \circ g=\operatorname{id}_{\mu_{7}}$, and $g \circ f=\operatorname{id}_{\mu_{7}}$, we know that f is an invertible function. Therefore, f is a bijection.
4. Now set $\mu_{12}=\left\{\alpha \in \mathbf{C}: \alpha^{12}=1\right\}$. Define $g: \mu_{12} \rightarrow \mu_{12}$ with the formula $g(\alpha)=\alpha^{2}$. Is the function g injective, surjective, both, or neither?
Answer: The function g is not an injection, because $g\left(\alpha^{7}\right)=\alpha^{14}=\alpha^{12} \alpha^{2}=\alpha^{2}=g(\alpha)$. Because the domain and the codomain of g are the same finite set, we know that g cannot be a surjection either.
5. Define a new set operation $A \triangle B$ with the formula

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

On the last homework, we saw that $A \triangle B=(A \cup B) \backslash(A \cap B)$. This operation is sometimes called the symmetric difference of the sets A and B.
(a) Show that $A \triangle B=B \triangle A$.
(b) Show that $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.

Answer: (a) We have $A \triangle B=(A \cup B) \backslash(A \cap B)=(B \cup A) \backslash(B \cap A)=B \triangle A$.
(b) This is harder. Start with the observation that $A \triangle B=(A \cup B) \backslash(A \cap B)=(A \cup$ $B) \cap(A \cap B)^{c}=(A \cup B) \cap\left(A^{c} \cup B^{c}\right)=\left(A \cap A^{c}\right) \cup\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right) \cup\left(B \cap B^{c}\right)=$ $\emptyset \cup\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right) \cup \emptyset=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$. Therefore,

$$
\begin{aligned}
(A \Delta B) \Delta C & =\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right) \Delta C \\
& =\left(\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right)^{c} \cap C\right) \cup\left(\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cap C^{c}\right) \\
& =\left(\left(\left(A \cap B^{c}\right)^{c} \cap\left(B \cap A^{c}\right)^{c}\right) \cap C\right) \cup\left(\left(\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cap C^{c}\right) \\
& =\left(\left(\left(A^{c} \cup B\right) \cap\left(B^{c} \cup A\right)\right) \cap C\right) \cup\left(\left(A \cap B^{c} \cap C^{c}\right) \cup\left(B \cap A^{c} \cap C^{c}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(\left(A^{c} \cap B^{c}\right) \cup(B \cap A)\right) \cap C\right) \cup\left(\left(A \cap B^{c} \cap C^{c}\right) \cup\left(B \cap A^{c} \cap C^{c}\right)\right) \\
& =\left(\left(A^{c} \cap B^{c} \cap C\right) \cup(B \cap A \cap C)\right) \cup\left(\left(A \cap B^{c} \cap C^{c}\right) \cup\left(B \cap A^{c} \cap C^{c}\right)\right) \\
& =\left(A^{c} \cap B^{c} \cap C\right) \cup(A \cap B \cap C) \cup\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) .
\end{aligned}
$$

This result is symmetric in A, B, and C, so if instead we compute $A \Delta(B \Delta C)=(B \Delta C) \triangle A$, we must get the same result.

