1. Find a function \(f : A \to B \) and subsets \(X, Y \subseteq A \) so that \(f(X \cap Y) \neq f(X) \cap f(Y) \).

Answer: Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is defined by the formula \(f(x) = x^2 \). Let \(X = \{1\} \) and \(Y = \{-1\} \). Then \(X \cap Y = \emptyset \), so \(f(X \cap Y) = f(\emptyset) = \emptyset \). On the other hand, \(f(X) = \{1\} \) and \(f(Y) = \{1\} \), so \(f(X) \cap f(Y) = \{1\} \).

2. Suppose that \(f : A \to B \) is an injective function, and \(X, Y \subseteq A \). Show that \(f(X \cap Y) = f(X) \cap f(Y) \).

Answer: First, pick \(z \in f(X \cap Y) \). By definition, that equation means that \(z = f(x) \) with \(x \in X \cap Y \). Therefore, \(x \in X \) and \(x \in Y \), so \(f(x) \in f(X) \) and \(f(x) \in f(Y) \). In other words, \(z \in f(X) \) and \(z \in f(Y) \), so \(z \in f(X) \cap f(Y) \). Note that we have not used the given information that \(f \) is an injective function, and we have proved that in all circumstances, \(f(X \cap Y) \subseteq f(X) \cap f(Y) \).

Now, suppose that \(z \in f(X) \cap f(Y) \). This means that \(z \in f(X) \) and \(z \in f(Y) \), and therefore \(z = f(x) \) for some \(x \in X \) and \(z = f(y) \) for some \(y \in Y \). But \(f \) is an injection, and the equation \(f(x) = f(y) \) therefore tells us that \(x = y \). In other words, \(z = f(x) \) with \(x \in X \) and \(x \in Y \), so \(x \in X \cap Y \). Therefore, \(z \in f(X \cap Y) \).

3. Let \(A \) be the set of non-negative integers. Define a function \(f : A \times A \to A \) with the formula \(f(a, b) = \binom{a+b}{a-b} \). Is \(f \) an injection? Is \(f \) a surjection? Be sure to explain your answer fully. Remember that we defined \(\binom{r}{s} \) to be 0 if \(s < 0 \), so the function definition makes sense.

Answer: The function \(f \) is not an injection, because \(f(1, 0) = \binom{1}{1} = 1 \) and \(f(2, 0) = \binom{2}{2} = 1 \).

The function \(f \) is also not a surjection, but that is a bit trickier to see. The only binomial coefficient which takes the value 2 is \(\binom{2}{1} \). Hence, solving \(f(a, b) = 2 \) means solving \(\binom{a+b}{a-b} = \binom{2}{1} \), meaning that \(a+b = 2 \) and \(a-b = 1 \). This equation has the unique solution \(a = 1 \frac{1}{2} \) and \(b = 1 \frac{1}{2} \), and those numbers are not in the domain of the function. Therefore, \(f(a, b) = 2 \) has no solution, so the function is not an injection.