Mathematics 216
Robert Gross
Homework 19
Answers

1. Suppose that $f: X \rightarrow Y$ is a function, and $A \subset X$. Prove or give a counterexample:

$$
Y \backslash f(A) \subset f(X \backslash A)
$$

As usual, a counterexample means giving explicit sets $X, Y$, and $A$, and an explicit function $f: X \rightarrow Y$.
Answer: This assertion is false. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $f(x)=x^{2}$, and $A=\{1\}$. Then $f(X \backslash A)=f(\mathbf{R} \backslash\{1\})=\mathbf{R}_{\geq 0}$, the set of nonnegative real numbers. However, $Y \backslash f(A)=\mathbf{R} \backslash\{1\}$, a set which is clearly not a subset of $\mathbf{R}_{\geq 0}$, because $Y \backslash f(A)$ includes all negative real numbers.
2. Suppose that $f: X \rightarrow Y$ is a function, and $B \subset Y$.
(a) Show that $f\left(f^{-1}(B)\right) \subset B$.
(b) Give an explicit example in which $f\left(f^{-1}(B)\right) \neq B$.
(c) Suppose that $f$ is a surjective function. Show that $f\left(f^{-1}(B)\right)=B$.

Answer: (a) Suppose that $y \in f\left(f^{-1}(B)\right)$. That means that $y=f(x)$ for some $x \in f^{-1}(B)$. But if $x \in f^{-1}(B)$, then $f(x) \in B$, which means that $y \in B$. This argument shows that $f\left(f^{-1}(B)\right) \subset B$.
(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=x^{2}$, and let $B=\{-1\}$. Then $f^{-1}(B)=\emptyset$, so $f\left(f^{-1}(B)\right)=f(\emptyset)=\emptyset \neq B$.
(c) We already proved in part $(a)$ that $f\left(f^{-1}(B)\right) \subset B$, so we need only prove that $B \subset f\left(f^{-1}(B)\right)$. Suppose that $y \in B$. Because $f$ is surjective, we know that there is some element $x \in X$ so that $f(x)=b$. This means that $x \in f^{-1}(B)$, and then $f(x) \in f\left(f^{-1}(B)\right)$. In other words, $b \in f\left(f^{-1}(B)\right)$.

