Mathematics 216
Robert Gross
Homework 20
Due March 19, 2012

1. Suppose that $f: X \rightarrow Y$, and for every set $A \subseteq X, f^{-1}(f(A))=A$. Prove that f is an injection.
2. Let \mathbf{Q}^{\times}be the set of all non-zero fractions. Define a relation \sim on \mathbf{Q}^{\times}by saying that $\frac{a}{b} \sim \frac{c}{d}$ if $\frac{a d}{b c}=\left(\frac{p}{q}\right)^{2}$, where $\frac{p}{q}$ is a non-zero fraction. For example, $\frac{3}{4} \sim \frac{16}{3}$.

Show that \sim is an equivalence relation.
3. Let n be a positive integer. Remember that μ_{n}, the set of nth roots of unity, is defined by $\mu_{n}=\left\{z \in \mathbf{C}: z^{n}=1\right\}$. Remember also that if $z \in \mu_{n}$, the order of z is the smallest positive integer k so that $z^{k}=1$.

Define a relation \sim on μ_{n} by saying that $z \sim w$ if the order of z and the order of w are equal.
(a) Show that this is an equivalence relation.
(b) List the equivalence classes in μ_{10} under this equivalence relation. How many different equivalence classes are there?

