Mathematics 216 Robert Gross Homework 20 Due March 19, 2012

1. Suppose that $f: X \to Y$, and for every set $A \subseteq X$, $f^{-1}(f(A)) = A$. Prove that f is an injection.

2. Let \mathbf{Q}^{\times} be the set of all non-zero fractions. Define a relation \sim on \mathbf{Q}^{\times} by saying that $\frac{a}{b} \sim \frac{c}{d}$ if $\frac{ad}{bc} = (\frac{p}{q})^2$, where $\frac{p}{q}$ is a non-zero fraction. For example, $\frac{3}{4} \sim \frac{16}{3}$. Show that \sim is an equivalence relation.

3. Let *n* be a positive integer. Remember that μ_n , the set of *n*th roots of unity, is defined by $\mu_n = \{z \in \mathbf{C} : z^n = 1\}$. Remember also that if $z \in \mu_n$, the *order* of *z* is the smallest positive integer *k* so that $z^k = 1$.

Define a relation \sim on μ_n by saying that $z \sim w$ if the order of z and the order of w are equal.

- (a) Show that this is an equivalence relation.
- (b) List the equivalence classes in μ_{10} under this equivalence relation. How many different equivalence classes are there?