Mathematics 216
Robert Gross
Homework 20
Answers

1. Suppose that $f: X \rightarrow Y$, and for every set $A \subseteq X, f^{-1}(f(A))=A$. Prove that f is an injection.
Answer: Suppose that $x_{1}, x_{2} \in X$, and $f\left(x_{1}\right)=f\left(x_{2}\right)$. We need to prove that $x_{1}=x_{2}$.
Let $A=\left\{x_{1}\right\}$. Then $f(A)=\left\{f\left(x_{1}\right)\right\}$, and because $f\left(x_{1}\right)=f\left(x_{2}\right)$, we know that $x_{1}, x_{2} \in$ $f^{-1}\left(\left\{f\left(x_{1}\right)\right\}\right)$. We are told that $f^{-1}(f(A))=A$, and therefore $x_{1}, x_{2} \in\left\{x_{1}\right\}$. That can only happen if $x_{1}=x_{2}$.
2. Let \mathbf{Q}^{\times}be the set of all non-zero fractions. Define a relation \sim on \mathbf{Q}^{\times}by saying that $\frac{a}{b} \sim \frac{c}{d}$ if $\frac{a d}{b c}=\left(\frac{p}{q}\right)^{2}$, where $\frac{p}{q}$ is a non-zero fraction. For example, $\frac{3}{4} \sim \frac{16}{3}$.

Show that \sim is an equivalence relation.
Answer: We need to show reflexivity, symmetry, and transivity.

- Reflexivity: Because $\frac{a b}{a b}=1=\left(\frac{1}{1}\right)^{2}$, we have $\frac{a}{b} \sim \frac{a}{b}$.
- Symmetry: If $\frac{a}{b} \sim \frac{c}{d}$, then $\frac{a d}{b c}=\left(\frac{p}{q}\right)^{2}$, and so $\frac{b c}{a d}=\left(\frac{q}{p}\right)^{2}$, showing that $\frac{c}{d} \sim \frac{a}{b}$. This is one point where it matters that $\frac{p}{q} \neq 0$, so that we can write $\frac{q}{p}$ without fear of division by 0 .
- Transivity: If $\frac{a}{b} \sim \frac{c}{d}$, and $\frac{c}{d} \sim \frac{e}{f}$, then $\frac{a d}{b c}=\left(\frac{p}{q}\right)^{2}$ and $\frac{c f}{d e}=\left(\frac{r}{s}\right)^{2}$. Multiplication now yields $\frac{a d c f}{b c d e}=\left(\frac{p r}{q s}\right)^{2}$. Cancellation yields $\frac{a f}{b e}=\left(\frac{p r}{q s}\right)^{2}$, where we know that $\frac{p r}{q s} \neq 0$, because $\frac{p}{q} \neq 0$ and $\frac{r}{s} \neq 0$. This equation shows that $\frac{a}{b} \sim \frac{e}{f}$.

3. Let n be a positive integer. Remember that μ_{n}, the set of nth roots of unity, is defined by $\mu_{n}=\left\{z \in \mathbf{C}: z^{n}=1\right\}$. Remember also that if $z \in \mu_{n}$, the order of z is the smallest positive integer k so that $z^{k}=1$.

Define a relation \sim on μ_{n} by saying that $z \sim w$ if the order of z and the order of w are equal.
(a) Show that this is an equivalence relation.
(b) List the equivalence classes in μ_{10} under this equivalence relation. How many different equivalence classes are there?
Answer: If $z \in \mu_{n}$, we write $o(z)$ for the order of z.
(a) We need to show reflexivity, symmetry, and transivity.

- Reflexivity: If $z \in \mu_{n}$, then $o(z)=o(z)$, so $z \sim z$.
- Symmetry: If $z \sim w$, then $o(z)=o(w)$, so $o(w)=o(z)$, and then $w \sim z$.
- Transitivity: If $z \sim s$, and $s \sim w$, then $o(z)=o(s)$ and $o(s)=o(w)$. Therefore $o(z)=o(w)$, and then $z \sim w$.
(b) Let $\zeta=e^{2 \pi i / 10}$, and then we know that $\mu_{10}=\left\{\zeta, \zeta^{2}, \ldots, \zeta^{9}, \zeta^{10}=1\right\}$. We know that $o(\zeta)=10$, and then our formula $o\left(\zeta^{a}\right)=10 /(a, 10)$ lets us compute the order of each of the other 9 elements of μ_{10}. The possible orders are $1,2,5$, and 10 , and the equivalence classes are:

Order	Element(s)
1	ζ^{10}
2	ζ^{5}
5	$\zeta^{2}, \zeta^{4}, \zeta^{6}, \zeta^{8}$
10	$\zeta, \zeta^{3}, \zeta^{7}, \zeta^{9}$

