Mathematics 216
Robert Gross
Homework 21
Answers

1. Suppose that $f: X \rightarrow Y$, and that f is an injection. Prove that for every set $A \subset X$, $f^{-1}(f(A))=A$.
Answer: Pick a subset $A \subset X$. Suppose first that $a \in A$. Then $f(a) \in f(A)$, and by definition, that means that $a \in f^{-1}(f(A))$. Note that this part of the argument does not require f to be an injection.

Now, suppose that $b \in f^{-1}(f(A))$. This means that $f(b) \in f(A)$, and therefore there is some element $a \in A$ so that $f(b)=f(a)$. But f is injective, so we can conclude that $b=a$, and therefore $b \in A$.
2. Use the Euclidean algorithm to solve the congruence

$$
32 y \equiv 11 \quad(\bmod 107)
$$

Answer: We start with division:

$$
\begin{aligned}
107 & =3 \cdot 32+11 \\
32 & =2 \cdot 11+10 \\
11 & =1 \cdot 10+1
\end{aligned}
$$

Therefore,

$$
\begin{array}{rlrl}
1 & =1 \cdot 11 & & +(-1) \cdot(10) \\
& =1 \cdot 11 & & +(-1) \cdot(32-2 \cdot 11) \\
& =3 \cdot 11 & & +(-1) \cdot(32) \\
& =3 \cdot(107-3 \cdot 32) & +(-1) \cdot(32) \\
& =3 \cdot 107 & & +(-10) \cdot(32)
\end{array}
$$

So we now know that $(32)(-10) \equiv 1(\bmod 107)$. Multiplying by 11 , we have $23(-10 \cdot 11) \equiv 11$ $(\bmod 107)$. So one possible solution for x would be $-10 \cdot 11=-110$, but it is kinder to notice that $-110 \equiv-3 \equiv 104(\bmod 107)$, and take $x \equiv 104(\bmod 107)$.
3. Suppose that the congruence $a x \equiv b(\bmod n)$ has at least one solution. Show that $(a, n) \mid b$. Answer: If the congruence $a x \equiv b(\bmod n)$ has a solution, then we know that for some value of $x, n \mid a x-b$. Equivalently, we can write $n q=a x-b$, or $b=a x-n q$. We know that $(a, n) \mid a$ and $(a, n) \mid n$, so elementary properties of divisibility tell us that $(a, n) \mid b$.

