Mathematics 216 Robert Gross Homework 21 Answers

1. Suppose that $f: X \to Y$, and that f is an injection. Prove that for every set $A \subset X$, $f^{-1}(f(A)) = A$.

Answer: Pick a subset $A \subset X$. Suppose first that $a \in A$. Then $f(a) \in f(A)$, and by definition, that means that $a \in f^{-1}(f(A))$. Note that this part of the argument does not require f to be an injection.

Now, suppose that $b \in f^{-1}(f(A))$. This means that $f(b) \in f(A)$, and therefore there is some element $a \in A$ so that f(b) = f(a). But f is injective, so we can conclude that b = a, and therefore $b \in A$.

2. Use the Euclidean algorithm to solve the congruence

$$32y \equiv 11 \pmod{107}.$$

Answer: We start with division:

$$107 = 3 \cdot 32 + 11 32 = 2 \cdot 11 + 10 11 = 1 \cdot 10 + 1$$

Therefore,

$$1 = 1 \cdot 11 + (-1) \cdot (10)$$

= 1 \cdot 11 + (-1) \cdot (32 - 2 \cdot 11)
= 3 \cdot 11 + (-1) \cdot (32)
= 3 \cdot (107 - 3 \cdot 32) + (-1) \cdot (32)
= 3 \cdot 107 + (-10) \cdot (32)

So we now know that $(32)(-10) \equiv 1 \pmod{107}$. Multiplying by 11, we have $23(-10 \cdot 11) \equiv 11 \pmod{107}$. So one possible solution for x would be $-10 \cdot 11 = -110$, but it is kinder to notice that $-110 \equiv -3 \equiv 104 \pmod{107}$, and take $x \equiv 104 \pmod{107}$.

3. Suppose that the congruence $ax \equiv b \pmod{n}$ has at least one solution. Show that (a, n)|b. Answer: If the congruence $ax \equiv b \pmod{n}$ has a solution, then we know that for some value of x, n|ax - b. Equivalently, we can write nq = ax - b, or b = ax - nq. We know that (a, n)|aand (a, n)|n, so elementary properties of divisibility tell us that (a, n)|b.