Mathematics 216
Robert Gross
Homework 22
Answers

1. Define a relation on $\mathbf{Z}$ by setting $a \sim b$ if $a b>0$. Is this an equivalence relation? If so, how many unequal equivalence classes are there?
Answer: This is not an equivalence relation. It is not true that $0 \sim 0$, so the relation is not reflexive.
2. Now define a relation on $\mathbf{Z}$ by setting $a \sim b$ if $a b \geq 0$. Is this an equivalence relation? If so, how many unequal equivalence classes are there?
Answer: This is also not an equivalence relation. We have $1 \sim 0$, and $0 \sim-1$, but $1 \nsim-1$, so the relation is not transitive.
3. Use the Chinese Remainder Theorem to find the smallest positive integer $n$ so that

$$
\begin{array}{ll}
n \equiv 23 & (\bmod 34) \\
n \equiv 11 & (\bmod 23) \\
n \equiv 14 & (\bmod 19)
\end{array}
$$

Answer: Start with $n \equiv 23(\bmod 34)$, and rewrite that congruence as the equation $n=$ $34 a+23$. Substitute into the second congruence, and we have $34 a+23 \equiv 11(\bmod 23)$, or $11 a \equiv 11(\bmod 23)$, with the obvious solution $a \equiv 1(\bmod 23)$. That means that $a=23 b+1$, and so $n=34 a+23=34(23 b+1)+23=782 b+57$. Now, substitute into the third congruence, and we have $782 b+57 \equiv 14(\bmod 19)$, or $3 b \equiv-43 \equiv 14$ (mod 19). We could use the Euclidean algorithm here, or we could just notice that this is the same as $3 b \equiv 33(\bmod 19)$, and so $b \equiv 11(\bmod 19)$. Therefore, $b=19 c+11$, and $n=782 b+57=782(19 c+11)+57=14858 c+8659$.

Therefore, the smallest positive integer solution to the three congruences is $n=8659$.

