Mathematics 216
Robert Gross
Homework 24
Answers

1. Consider the function $f: \mathbf{Z} / 5 \mathbf{Z} \rightarrow \mathbf{R}$ defined by the formula $f\left([n]_{5}\right)=\sin (n \pi)$. Is this function well-defined?
Answer: This function is well-defined. Suppose that $[n]_{5}=[m]_{5}$. Then $f\left([m]_{5}\right)=\sin (m \pi)=0$, and $f\left([n]_{5}\right)=\sin (n \pi)=0$. In other words, the function is identically 0 , so it is well-defined.
2. Let n be a positive integer. Show that the function $f: \mathbf{Z} / 3^{n} \mathbf{Z} \rightarrow \mathbf{Z} / 3^{n+1} \mathbf{Z}$ defined by $f\left([x]_{3^{n}}\right)=\left[x^{3}\right]_{3^{n+1}}$ is well-defined.
Answer: Suppose that $[x]_{3^{n}}=[y]_{3^{n}}$, so that $y=x+3^{n} k$. Then

$$
\begin{aligned}
f\left([y]_{3^{n}}\right) & =\left[y^{3}\right]_{3^{n+1}}=\left[\left(x+3^{n} k\right)^{3}\right]_{3^{n+1}}=\left[x^{3}+x^{2} 3^{n+1} k+x 3^{2 n+1} k^{2}+3^{3 n} k^{3}\right]_{3^{n+1}} \\
& =\left[x^{3}+3^{n+1}\left(x^{2} k+x 3^{n} k^{2}+3^{2 n-1} k^{3}\right)\right]_{3^{n+1}}=\left[x^{3}\right]_{3^{n+1}},
\end{aligned}
$$

showing that the function is well-defined.
3. What is the remainder when 10^{400} is divided by 17 ?

Answer: We know that $10^{16} \equiv 1(\bmod 17)$. Dividing 400 by 16 yields $400=16 * 25$, and so $10^{400}=\left(10^{16}\right)^{2} 5 \equiv 1^{25} \equiv 1(\bmod 17)$. Therefore, the remainder is 1 .

