Mathematics 216
Robert Gross
Homework 25
Answers

1. What is the remainder when 10^{400} is divided by 70 ?

Answer: We know without effort that $10^{400} \equiv 0(\bmod 10)$. We also know that $10^{6} \equiv 0$ $(\bmod 7)$, and $400=6 \cdot 66+4$. Therefore, $10^{400}=\left(10^{6}\right)^{66} 10^{4} \equiv 10^{4} \equiv 3^{4} \equiv 4(\bmod 7)$.

We now have a (not hard) Chinese Remainder Theorem exercise. Write $10^{400}=10 k$, and we need to solve $10 k \equiv 4(\bmod 7)$. We see, either by guesswork or the Euclidean algorithm, that $k \equiv 6(\bmod 7)$, so $k=7 j+6$, and $10^{400}=10(7 j+6)=70 j+60$. Therefore, the answer is 60 .
2. What is the remainder when $1^{6}+2^{6}+3^{6}+\cdots+200^{6}$ is divided by 4 ?

Answer: Because $1 \equiv 5 \equiv 9 \equiv \cdots(\bmod 4)$, and $2 \equiv 6 \equiv 10 \equiv \cdots(\bmod 4)$, and $3 \equiv 7 \equiv \cdots$ $(\bmod 4)$, we have $1^{6}+2^{6}+3^{6}+\cdots+200^{6} \equiv 50 \cdot 1^{6}+50 \cdot 2^{6}+50 \cdot 3^{6}(\bmod 4)$. Furthermore, $2^{6} \equiv 0(\bmod 4)$, and $3^{6} \equiv 1(\bmod 4)$, so we have $1^{6}+2^{6}+3^{6}+\cdots+200^{6} \equiv 50+50 \equiv 0$ $(\bmod 4)$. Hence, the remainder is 0 .
3. What is the remainder when $1^{6}+2^{6}+3^{6}+\cdots+200^{6}$ is divided by 7 ?

Answer: Now we have $1^{6} \equiv 2^{6} \equiv \cdots \equiv 6^{6} \equiv 1(\bmod 7)$, and $7^{7} \equiv 0(\bmod 7)$. Hence, $1^{6}+\cdots+7^{6} \equiv 6(\bmod 7)$. Because $200=7 \cdot 28+4$, we have $1^{6}+\cdots+200^{6} \equiv 28\left(1^{6}+\cdots+\right.$ $\left.7^{6}\right)+1^{6}+2^{6}+3^{6}+4^{6} \equiv 1^{6}+2^{6}+3^{6}+4^{6} \equiv 1+1+1+1=4(\bmod 7)$. In other words, the remainder is 0 .
4. What is the remainder when 7^{200} is divided by 33 ?

Answer: This is a straightforward application of Euler's Theorem. Because $(7,33)=1$, we know that $7^{\phi(33)} \equiv 1(\bmod 33)$. Now, $\phi(33)=\phi(3) \phi(11)=2 \cdot 10=20$, so $7^{20} \equiv 1(\bmod 33)$. Therefore, $7200 \equiv\left(7^{20}\right)^{10} \equiv 1^{10} \equiv 1(\bmod 33)$. Hence, the remainder is 1 .

