Mathematics 216
Robert Gross
Homework 26
Due April 11, 2012

1. Let $f: X \rightarrow Y$ be a function. Suppose that for all subsets $A, B \subset X$, we know that $f(A \cap B)=f(A) \cap f(B)$. Prove or give a counterexample:
(a) f must be a surjection.
(b) f must be an injection.
2. Let $M_{2}(\mathbf{R})$ be the set of all 2×2-matrices with real entries. Define a relation on $M_{2}(\mathbf{R})$ by saying that the matrices A and B are similar if there is an invertible matrix T so that $A T=T B$. Show that similarity of matrices is an equivalence relation.
3. Suppose that n is an integer which is at least $2, a$ an integer which is relatively prime to n, and $k=o\left([a]_{n}\right)$. Prove that $o\left(\left[a^{d}\right]_{n}\right)=k /(k, d)$.
4. Suppose that n is an integer which is at least 2 , and a and b are integers which are each relatively prime to n. Suppose that $o\left([a]_{n}\right)=k$, and $o\left([b]_{n}\right)=j$, and $(k, j)=1$. Prove that $o\left([a b]_{n}\right)=j k$.
5. Suppose that D is an integral domain. Define a relation \sim on $D \times(D \backslash\{0\})$ with the formula $(a, b) \sim(c, d)$ if $a d=b c$. Prove that the relation \sim is transitive.
6. Now define a relation \sim on $\mathbf{Z} / 20 \mathbf{Z} \times(\mathbf{Z} / 20 \mathbf{Z} \backslash\{0\})$ with the same formula: $(a, b) \sim(c, d)$ if $a d=b c$. Show that \sim is not transitive.
