1. Let \(f : X \to Y \) be a function. Suppose that for all subsets \(A, B \subset X \), we know that
\[f(A \cap B) = f(A) \cap f(B) \]. Prove or give a counterexample:

(a) \(f \) must be a surjection.

(b) \(f \) must be an injection.

Answer: (a) This is false. Consider \(X = \{1\} \), \(Y = \{1, 2\} \), and \(f(1) = 1 \). The function is not surjective, but because the only subsets of \(X \) are \(X \) and \(\emptyset \), we can verify that
\[f(A \cap B) = f(A) \cap f(B) \] for all \(A, B \subset X \).

(b) This is true. Suppose that \(f(x_1) = f(x_2) \). We need to prove that \(x_1 = x_2 \). Let \(A = \{x_1\} \) and \(B = \{x_2\} \). We are given \(f(A \cap B) = f(A) \cap f(B) \). We know that \(f(A) \cap f(B) = \{f(x_1)\} \). Therefore, \(A \cap B \neq \emptyset \), because \(f(\emptyset) = \emptyset \). If \(A \cap B \neq \emptyset \), we must have \(A = B \) and then \(x_1 = x_2 \).

2. Let \(M_2(\mathbb{R}) \) be the set of all \(2 \times 2 \) matrices with real entries. Define a relation on \(M_2(\mathbb{R}) \) by saying that the matrices \(A \) and \(B \) are similar if there is an invertible matrix \(T \) so that
\[AT = TB \]. Show that similarity of matrices is an equivalence relation.

Answer: We check the usual 3 properties:

- **Reflexivity:** Pick \(A \in M_2(\mathbb{R}) \). The identity matrix \(I \) is invertible, and we know that
 \[AI = IA \]. Therefore, \(A \) is similar to itself.

- **Symmetry:** Suppose \(A, B \in M_2(\mathbb{R}) \), with \(A \) similar to \(B \). That means that
 \[AT = TB \] for some invertible matrix \(T \). Multiply that equation by \(T^{-1} \) on both the left and right and we get
 \[BT^{-1} = T^{-1}A \]. Because \(T^{-1} \) is also an invertible matrix, we conclude that
 \(B \) is similar to \(A \).

- **Transitivity:** Suppose \(A, B, C \in M_2(\mathbb{R}) \), with \(A \) similar to \(B \) and \(B \) similar to \(C \). This means that there is an invertible matrix \(T \) so that
 \[AT = TB \] and another invertible matrix \(S \) so that
 \[BS = SC \]. Therefore, \(A(TS) = (AT)S = (TB)S = T(BS) = T(SC) = (TS)C \). Because both \(T \) and \(S \) are invertible, we know that \(TS \) is invertible, and therefore \(A \) is similar to \(C \).

3. Suppose that \(n \) is an integer which is at least 2, \(a \) an integer which is relatively prime to \(n \), and \(k = o([a^n]) \). Prove that \(o([a^d]) = k/(k, d) \).

Answer: We know that
\[(a^d)^{k/(k,d)} \equiv (a^k)^{d/(k,d)} \equiv 1^{d/(k,d)} \equiv 1 \pmod{n} \], so
\[o([a^d]) \leq k/(k, d) \].

Now, suppose that \((a^d)^j \equiv 1 \pmod{n} \), with \(j > 0 \). We need to show that \(j \geq k/(k, d) \). We have
\[a^d \equiv 1 \pmod{n} \], and therefore
\[o(a)|dj, \text{ or } k|dj \]. Divide by \((k, d) \), and we have
\[\frac{k}{(k, d)}|\frac{d}{(k, d)}j \]. Now, \(k/(k, d) \) and \(d/(k, d) \) are relatively prime, and therefore we know that
\[\frac{k}{(k, d)} \leq j \], which is the desired result.

4. Suppose that \(n \) is an integer which is at least 2, and \(a \) and \(b \) are integers which are each relatively prime to \(n \). Suppose that
\[o([a]) = k, \text{ and } o([b]) = j, \text{ and } (k, j) = 1 \]. Prove that
\[o([ab]) = kj \].

Answer: We know that
\[(ab)^{kj} \equiv (a^k)^j(b^j)^k \equiv 1^j1^k \equiv 1 \pmod{n} \]. This shows that
\[o(ab) \leq k j \].

Now, suppose that \(m > 0 \) and \((ab)^m \equiv 1 \pmod{n} \). We need to prove that \(m \geq k j \).
First, raise the equation to the power \(k \), and we get \(a^{km}b^{km} \equiv 1 \pmod{n} \). Because \(a^k \equiv 1 \pmod{n} \), we have \(b^{km} \equiv 1 \pmod{n} \), and hence \(o(b)|km \). Because \((j,k) = 1 \), we have \(j|m \).

Second, raise the equation to the power \(j \), and we get \(a^{jm}b^{jm} \equiv 1 \pmod{n} \). Because \(b^j \equiv 1 \pmod{n} \), we have \(a^{jm} \equiv 1 \pmod{n} \). Hence \(o(a)|jm \). Because \((k,j) = 1 \), we have \(k|m \).

Finally, we have \(j|m \), \(k|m \), and \((j,k) = 1 \), which combine to tell us that \(jk|m \), and hence \(jk \leq m \).

5. Suppose that \(D \) is an integral domain. Define a relation \(\sim \) on \(D \times (D \setminus \{0\}) \) with the formula \((a, b) \sim (c, d)\) if \(ad = bc \). Prove that the relation \(\sim \) is transitive.

Answer: Suppose that \((a, b) \sim (c, d)\) and \((c, d) \sim (e, f)\). That gives \(ad = bc \) and \(cf = de \). Multiply the first equation by \(f \) to get \(adf = bcf \). Multiply the second equation by \(b \) to get \(bcf = bde \). Therefore, \(adf = bde \). Now, because \(d \neq 0 \), we can cancel \(d \) and get \(af = be \), which says that \((a, b) \sim (e, f)\).

6. Now define a relation \(\sim \) on \(\mathbb{Z}/20\mathbb{Z} \times (\mathbb{Z}/20\mathbb{Z} \setminus \{0\}) \) with the same formula: \((a, b) \sim (c, d)\) if \(ad = bc \). Show that \(\sim \) is not transitive.

Answer: We have \((0, 1) \sim (0, 5)\), and \((0, 5) \sim (4, 5)\), but \((0, 1) \not\sim (4, 5)\).