Mathematics 216 Robert Gross Homework 26 Answers

1. Let $f: X \to Y$ be a function. Suppose that for all subsets $A, B \subset X$, we know that $f(A \cap B) = f(A) \cap f(B)$. Prove or give a counterexample:

- (a) f must be a surjection.
- (b) f must be an injection.

Answer: (a) This is false. Consider $X = \{1\}$, $Y = \{1, 2\}$, and f(1) = 1. The function is not surjective, but because the only subsets of X are X and \emptyset , we can verify that $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subset X$.

(b) This is true. Suppose that $f(x_1) = f(x_2)$. We need to prove that $x_1 = x_2$. Let $A = \{x_1\}$ and $B = \{x_2\}$. We are given $f(A \cap B) = f(A) \cap f(B)$. We know that $f(A) \cap f(B) = \{f(x_1)\}$. Therefore, $A \cap B \neq \emptyset$, because $f(\emptyset) = \emptyset$. If $A \cap B \neq \emptyset$, we must have A = B and then $x_1 = x_2$.

2. Let $M_2(\mathbf{R})$ be the set of all 2×2 -matrices with real entries. Define a relation on $M_2(\mathbf{R})$ by saying that the matrices A and B are *similar* if there is an invertible matrix T so that AT = TB. Show that similarity of matrices is an equivalence relation.

Answer: We check the usual 3 properties:

- Reflexivity: Pick $A \in M_2(\mathbf{R})$. The identity matrix I is invertible, and we know that AI = IA. Therefore, A is similar to itself.
- Symmetry: Suppose $A, B \in M_2(\mathbf{R})$, with A similar to B. That means that AT = TB for some invertible matrix T. Multiply that equation by T^{-1} on both the left and right and we get $BT^{-1} = T^{-1}A$. Because T^{-1} is also an invertible matrix, we conclude that B is similar to A.
- Transitivity: Suppose $A, B, C \in M_2(\mathbf{R})$, with A similar to B and B similar to C. This means that there is an invertible matrix T so that AT = TB and another invertible matrix S so that BS = SC. Therefore, A(TS) = (AT)S = (TB)S = T(BS) = T(SC) = (TS)C. Because both T and S are invertible, we know that TS is invertible, and therefore A is similar to C.

3. Suppose that n is an integer which is at least 2, a an integer which is relatively prime to n, and $k = o([a]_n)$. Prove that $o([a^d]_n) = k/(k, d)$.

Answer: We know that $(a^d)^{k/(k,d)} \equiv (a^k)^{d/(k,d)} \equiv 1^{d/(k,d)} \equiv 1 \pmod{n}$, so $o([a^d]_n) \leq k/(k,d)$. Now, suppose that $(a^d)^j \equiv 1 \pmod{n}$, with j > 0. We need to show that $j \geq k/(k,d)$. We have $a^{dj} \equiv 1 \pmod{n}$, and therefore o(a)|dj, or k|dj. Divide by (k,d), and we have $\frac{k}{(k,d)}|\frac{d}{(k,d)}j$. Now, k/(k,d) and d/(k,d) are relatively prime, and therefore we know that $\frac{k}{(k,d)}|j$. This says that $\frac{k}{(k,d)} \leq j$, which is the desired result.

4. Suppose that n is an integer which is at least 2, and a and b are integers which are each relatively prime to n. Suppose that $o([a]_n) = k$, and $o([b]_n) = j$, and (k, j) = 1. Prove that $o([ab]_n) = jk$.

Answer: We know that $(ab)^{kj} \equiv (a^k)^j (b^j)^k \equiv 1^j 1^k \equiv 1 \pmod{n}$. This shows that $o(ab) \leq kj$. Now, suppose that m > 0 and $(ab)^m \equiv 1 \pmod{n}$. We need to prove that $m \geq kj$. First, raise the equation to the power k, and we get $a^{km}b^{km} \equiv 1 \pmod{n}$. Because $a^k \equiv 1 \pmod{n}$, we have $b^{km} \equiv 1 \pmod{n}$, and hence o(b)|km. Because (j,k) = 1, we have j|m.

Second, raise the equation to the power j, and we get $a^{jm}b^{jm} \equiv 1 \pmod{n}$. Because $b^j \equiv 1 \pmod{n}$, we have $a^{jm} \equiv 1 \pmod{n}$. Hence o(a)|jm. Because (k, j) = 1, we have k|m.

Finally, we have j|m, k|m, and (j, k) = 1, which combine to tell us that jk|m, and hence $jk \leq m$.

5. Suppose that D is an integral domain. Define a relation \sim on $D \times (D \setminus \{0\})$ with the formula $(a, b) \sim (c, d)$ if ad = bc. Prove that the relation \sim is transitive.

Answer: Suppose that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. That gives ad = bc and cf = de. Multiply the first equation by f to get adf = bcf. Multiply the second equation by b to get bcf = bde. Therefore, adf = bde. Now, because $d \neq 0$, we can cancel d and get af = be, which says that $(a, b) \sim (e, f)$.

6. Now define a relation ~ on $\mathbb{Z}/20\mathbb{Z} \times (\mathbb{Z}/20\mathbb{Z} \setminus \{0\})$ with the same formula: $(a, b) \sim (c, d)$ if ad = bc. Show that ~ is *not* transitive.

Answer: We have $(0,1) \sim (0,5)$, and $(0,5) \sim (4,5)$, but $(0,1) \not\sim (4,5)$.