Mathematics 216
Robert Gross
Homework 26
Answers

1. Let $f: X \rightarrow Y$ be a function. Suppose that for all subsets $A, B \subset X$, we know that $f(A \cap B)=f(A) \cap f(B)$. Prove or give a counterexample:
(a) f must be a surjection.
(b) f must be an injection.

Answer: (a) This is false. Consider $X=\{1\}, Y=\{1,2\}$, and $f(1)=1$. The function is not surjective, but because the only subsets of X are X and \emptyset, we can verify that $f(A \cap B)=f(A) \cap f(B)$ for all $A, B \subset X$.
(b) This is true. Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. We need to prove that $x_{1}=x_{2}$. Let $A=\left\{x_{1}\right\}$ and $B=\left\{x_{2}\right\}$. We are given $f(A \cap B)=f(A) \cap f(B)$. We know that $f(A) \cap f(B)=\left\{f\left(x_{1}\right)\right\}$. Therefore, $A \cap B \neq \emptyset$, because $f(\emptyset)=\emptyset$. If $A \cap B \neq \emptyset$, we must have $A=B$ and then $x_{1}=x_{2}$.
2. Let $M_{2}(\mathbf{R})$ be the set of all 2×2-matrices with real entries. Define a relation on $M_{2}(\mathbf{R})$ by saying that the matrices A and B are similar if there is an invertible matrix T so that $A T=T B$. Show that similarity of matrices is an equivalence relation.
Answer: We check the usual 3 properties:

- Reflexivity: Pick $A \in M_{2}(\mathbf{R})$. The identity matrix I is invertible, and we know that $A I=I A$. Therefore, A is similar to itself.
- Symmetry: Suppose $A, B \in M_{2}(\mathbf{R})$, with A similar to B. That means that $A T=T B$ for some invertible matrix T. Multiply that equation by T^{-1} on both the left and right and we get $B T^{-1}=T^{-1} A$. Because T^{-1} is also an invertible matrix, we conclude that B is similar to A.
- Transitivity: Suppose $A, B, C \in M_{2}(\mathbf{R})$, with A similar to B and B similar to C. This means that there is an invertible matrix T so that $A T=T B$ and another invertible matrix S so that $B S=S C$. Therefore, $A(T S)=(A T) S=(T B) S=T(B S)=$ $T(S C)=(T S) C$. Because both T and S are invertible, we know that $T S$ is invertible, and therefore A is similar to C.

3. Suppose that n is an integer which is at least $2, a$ an integer which is relatively prime to n, and $k=o\left([a]_{n}\right)$. Prove that $o\left(\left[a^{d}\right]_{n}\right)=k /(k, d)$.
Answer: We know that $\left(a^{d}\right)^{k /(k, d)} \equiv\left(a^{k}\right)^{d /(k, d)} \equiv 1^{d /(k, d)} \equiv 1(\bmod n)$, so $o\left(\left[a^{d}\right]_{n}\right) \leq k /(k, d)$.
Now, suppose that $\left(a^{d}\right)^{j} \equiv 1(\bmod n)$, with $j>0$. We need to show that $j \geq k /(k, d)$. We have $a^{d j} \equiv 1(\bmod n)$, and therefore $o(a) \mid d j$, or $k \mid d j$. Divide by (k, d), and we have $\frac{k}{(k, d)} \left\lvert\, \frac{d}{(k, d)} j\right.$. Now, $k /(k, d)$ and $d /(k, d)$ are relatively prime, and therefore we know that $\left.\frac{k}{(k, d)} \right\rvert\, j$. This says that $\frac{k}{(k, d)} \leq j$, which is the desired result.
4. Suppose that n is an integer which is at least 2 , and a and b are integers which are each relatively prime to n. Suppose that $o\left([a]_{n}\right)=k$, and $o\left([b]_{n}\right)=j$, and $(k, j)=1$. Prove that $o\left([a b]_{n}\right)=j k$.
Answer: We know that $(a b)^{k j} \equiv\left(a^{k}\right)^{j}\left(b^{j}\right)^{k} \equiv 1^{j} 1^{k} \equiv 1(\bmod n)$. This shows that $o(a b) \leq k j$.
Now, suppose that $m>0$ and $(a b)^{m} \equiv 1(\bmod n)$. We need to prove that $m \geq k j$.

First, raise the equation to the power k, and we get $a^{k m} b^{k m} \equiv 1(\bmod n)$. Because $a^{k} \equiv 1$ $(\bmod n)$, we have $b^{k m} \equiv 1(\bmod n)$, and hence $o(b) \mid k m$. Because $(j, k)=1$, we have $j \mid m$.

Second, raise the equation to the power j, and we get $a^{j m} b^{j m} \equiv 1(\bmod n)$. Because $b^{j} \equiv 1$ $(\bmod n)$, we have $a^{j m} \equiv 1(\bmod n)$. Hence $o(a) \mid j m$. Because $(k, j)=1$, we have $k \mid m$.

Finally, we have $j|m, k| m$, and $(j, k)=1$, which combine to tell us that $j k \mid m$, and hence $j k \leq m$.
5. Suppose that D is an integral domain. Define a relation \sim on $D \times(D \backslash\{0\})$ with the formula $(a, b) \sim(c, d)$ if $a d=b c$. Prove that the relation \sim is transitive.
Answer: Suppose that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. That gives $a d=b c$ and $c f=d e$. Multiply the first equation by f to get $a d f=b c f$. Multiply the second equation by b to get $b c f=b d e$. Therefore, $a d f=b d e$. Now, because $d \neq 0$, we can cancel d and get $a f=b e$, which says that $(a, b) \sim(e, f)$.
6. Now define a relation \sim on $\mathbf{Z} / 20 \mathbf{Z} \times(\mathbf{Z} / 20 \mathbf{Z} \backslash\{0\})$ with the same formula: $(a, b) \sim(c, d)$ if $a d=b c$. Show that \sim is not transitive.
Answer: We have $(0,1) \sim(0,5)$, and $(0,5) \sim(4,5)$, but $(0,1) \nsim(4,5)$.

