1. Let \(f(x) = 2x^2 + 3x + 1 \) and let \(g(x) = 3x^4 + 2x + 1 \). Consider both \(f(x) \) and \(g(x) \) as elements of \(\mathbb{F}_5[x] \), and compute \(q(x) \) and \(r(x) \) so that \(g(x) = q(x)f(x) + r(x) \) with \(\deg(r) < 2 \).

2. Find the greatest common divisor of \(x^5 - 1 \) and \(2x^2 + 3x + 1 \) as elements of \(\mathbb{F}_{11}[x] \). Then find polynomials \(f, g \in \mathbb{F}_{11}[x] \) so that \((x^5 - 1)f + (2x^2 + 3x + 1)g = (x^5 - 1, 2x^2 + 3x + 1) \). Remember that the greatest common divisor is defined to be monic.

3. On a previous homework, we defined the concept of similar matrices: \(A, B \in M_2(\mathbb{R}) \) are similar if there is an invertible matrix \(T \) so that \(AT = TB \). Suppose that \(A \) and \(B \) are similar and that \(A \) is invertible. Prove that \(B \) is invertible.

4. Suppose that \(f : \mathbb{Q} \rightarrow \mathbb{Q} \) is defined by \(f(x) = \frac{x}{x^2 - 2} \). Is \(f \) a surjection? Is \(f \) an injection? Be sure to explain your answer.

5. Suppose that \(g : \mathbb{Z} \rightarrow \mathbb{Q} \) is defined by \(g(x) = \frac{x}{x^2 - 2} \). Is \(g \) a surjection? Is \(g \) an injection? Be sure to explain your answer.