Mathematics 216
Robert Gross
Homework 28
Due April 18, 2012

1. Let $f(x)=2 x^{2}+3 x+1$ and let $g(x)=3 x^{4}+2 x+1$. Consider both $f(x)$ and $g(x)$ as elements of $\mathbf{F}_{5}[x]$, and compute $q(x)$ and $r(x)$ so that $g(x)=q(x) f(x)+r(x)$ with $\operatorname{deg}(r)<2$.
2. Find the greatest common divisor of $x^{5}-1$ and $2 x^{2}+3 x+1$ as elements of $\mathbf{F}_{11}[x]$. Then find polynomials $f, g \in \mathbf{F}_{11}[x]$ so that $\left(x^{5}-1\right) f+\left(2 x^{2}+3 x+1\right) g=\left(x^{5}-1,2 x^{2}+3 x+1\right)$. Remember that the greatest common divisor is defined to be monic.
3. On a previous homework, we defined the concept of similar matrices: $A, B \in M_{2}(\mathbf{R})$ are similar if there is an invertible matrix T so that $A T=T B$. Suppose that A and B are similar and that A is invertible. Prove that B is invertible.
4. Suppose that $f: \mathbf{Q} \rightarrow \mathbf{Q}$ is defined by $f(x)=\frac{x}{x^{2}-2}$. Is f a surjection? Is f an injection? Be sure to explain your answer.
5. Suppose that $g: \mathbf{Z} \rightarrow \mathbf{Q}$ is defined by $g(x)=\frac{x}{x^{2}-2}$. Is g a surjection? Is g an injection? Be sure to explain your answer.
