Mathematics 216
Robert Gross
Homework 28
Answers

1. Let $f(x)=2 x^{2}+3 x+1$ and let $g(x)=3 x^{4}+2 x+1$. Consider both $f(x)$ and $g(x)$ as elements of $\mathbf{F}_{5}[x]$, and compute $q(x)$ and $r(x)$ so that $g(x)=q(x) f(x)+r(x)$ with $\operatorname{deg}(r)<2$. Answer: We have

$$
2 x ^ { 2 } + 3 x + 1 \longdiv { 4 x ^ { 2 } + 4 x + 2 } \begin{array} { r }
{ 3 x ^ { 4 } + 0 x ^ { 3 } + 0 x ^ { 2 } + 2 x + 1 } \\
{ \frac { 3 x ^ { 4 } + 2 x ^ { 3 } + 4 x ^ { 2 } } { 3 x ^ { 3 } + x ^ { 2 } + 2 x + 1 } } \\
{ \frac { 3 x ^ { 3 } + 2 x ^ { 2 } + 4 x } { 4 x ^ { 2 } + 3 x + 1 } } \\
{ \frac { 4 x ^ { 2 } + x + 2 } { 2 x + 4 } }
\end{array}
$$

and so

$$
3 x^{4}+2 x+1=\left(4 x^{2}+4 x+2\right)\left(2 x^{2}+3 x+1\right)+(2 x+4) .
$$

2. Find the greatest common divisor of $x^{5}-1$ and $2 x^{2}+3 x+1$ as elements of $\mathbf{F}_{11}[x]$. Then find polynomials $f, g \in \mathbf{F}_{11}[x]$ so that $\left(x^{5}-1\right) f+\left(2 x^{2}+3 x+1\right) g=\left(x^{5}-1,2 x^{2}+3 x+1\right)$. Remember that the greatest common divisor is defined to be monic.
Answer: We have

$$
2 x^{2}+3 x+1 \begin{array}{r}
6 x^{3}+2 x^{2}+5 x+8 \\
x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+0 x+10 \\
x^{5}+7 x^{4}+6 x^{3} \\
4 x^{4}+5 x^{3}+0 x^{2}+0 x+10 \\
\frac{4 x^{4}+6 x^{3}+2 x^{2}}{10 x^{3}+9 x^{2}}+0 x+10 \\
\frac{10 x^{3}+4 x^{2}+5 x}{5 x^{2}+6 x+10} \\
\frac{5 x^{2}+2 x+8}{4 x+2}
\end{array}
$$

So

$$
x^{5}-1=\left(6 x^{3}+2 x^{2}+5 x+8\right)\left(2 x^{2}+3 x+1\right)+(4 x+2)
$$

Now

$$
\begin{array}{r}
4 x + 2 \longdiv { 6 x + 6 } \begin{array} { r }
{ 2 x ^ { 2 } + 3 x + 1 } \\
{ \frac { 2 x ^ { 2 } + x } { 2 x + 1 } } \\
{ \frac { 2 x + 1 } { 0 } }
\end{array}
\end{array}
$$

$$
2 x^{2}+3 x+1=(6 x+6)(4 x+2)
$$

Therefore, the greatest common divisor is $4 x+2$, except that $4 x+2$ is not monic. We have to multiply by $4^{-1}=3$:

$$
\begin{aligned}
4 x+2 & =(1)\left(x^{5}-1\right)+\left(-6 x^{3}-2 x^{2}-5 x-8\right)\left(2 x^{2}+3 x+1\right) \\
x+6 & =(3)\left(x^{5}-1\right)+\left(4 x^{3}+5 x^{2}+7 x+9\right)\left(2 x^{2}+3 x+1\right)
\end{aligned}
$$

The greatest common divisor is $x+6$.
3. On a previous homework, we defined the concept of similar matrices: $A, B \in M_{2}(\mathbf{R})$ are similar if there is an invertible matrix T so that $A T=T B$. Suppose that A and B are similar and that A is invertible. Prove that B is invertible.
Answer: Suppose that A and B are similar. Then there is an invertible matrix T so that $A T=T B$. Therefore, $\operatorname{det}(A T)=\operatorname{det}(T B)$. We know that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$, and so we have $\operatorname{det}(A) \operatorname{det}(T)=\operatorname{det}(T) \operatorname{det}(B)$. Because T is invertible, we know that $\operatorname{det}(T) \neq 0$, and therefore we can cancel and get $\operatorname{det}(A)=\operatorname{det}(B)$. Now, if A is invertible, $\operatorname{det}(A) \neq 0$, so $\operatorname{det}(B) \neq 0$, and therefore B is invertible.
4. Suppose that $f: \mathbf{Q} \rightarrow \mathbf{Q}$ is defined by $f(x)=\frac{x}{x^{2}-2}$. Is f a surjection? Is f an injection? Be sure to explain your answer.
Answer: To see if f is a surjection, we can pick a specific value y in the codomain and see if we can solve $f(x)=y$. In particular, suppose we try to solve $f(x)=10$. We get $x /\left(x^{2}-2\right)=10$, or $x=10 x^{2}-20$, or $10 x^{2}-x-20=0$. The discriminant of this equation is 801 , and because 801 is not a perfect square, we know that the roots are not rational numbers. Therefore, the function is not a surjection.

To see if f is an injection, we set $f(a)=f(b)$, and see if we can conclude that $a=b$. We have

$$
\begin{aligned}
f(a) & =f(b) \\
\frac{a}{a^{2}-2} & =\frac{b}{b^{2}-2} \\
a b^{2}-2 a & =a^{2} b-2 b \\
a b^{2}-a^{2} b & =2(a-b) \\
a b(b-a) & =-2(b-a) \\
a b & =-2
\end{aligned}
$$

So we see that if $a b=-2$, then it is possible for $f(a)$ and $f(b)$ to be equal. In particular, we have $f(1)=-1$ and $f(-2)=-1$, so the function is not injective.
5. Suppose that $g: \mathbf{Z} \rightarrow \mathbf{Q}$ is defined by $g(x)=\frac{x}{x^{2}-2}$. Is g a surjection? Is g an injection? Be sure to explain your answer.
Answer: Precisely the same reasoning as in the previous question applies: the function is neither surjective nor injective.

