Mathematics 216 Robert Gross Homework 29 Answers

1. Factor $x^4 + 1$ into irreducible factors in $\mathbf{Q}[x]$.

Answer: We know that $c^4 + 1$ is always positive if $c \in \mathbf{Q}$, and therefore $x^4 + 1$ has no linear factor x - c.

Now, suppose that $x^4 + 1 = (x^2 + ax + b)(x^2 + cx + d)$. We compute that $(x^2 + ax + b)(x^2 + a$ $cx + d) = x^4 + (a + c)x^3 + (ac + b + d)x^2 + (bc + ad)x + bd$, leading to the four equations:

$$(2) ac+b+d=0$$

$$bc + ad = 0$$

$$(4) bd = 1$$

Take c = -a from (1), and substitute into (3) to get a(-b+d) = 0. The possibilities are a = 0 or b = d.

If a = 0, then (1) says that c = 0. Then (2) implies that b = -d. Substitution into (4) means that $-b^2 = 1$, which has no solution in **Q**.

If b = d, then (4) means that $b^2 = 1$, and so $b = \pm 1$. Consider first b = -1. Substitution into (2) implies $-a^2 - 2 = 0$, or $a^2 = -2$, which has no solution in **Q**. Finally, if b = 1, we have $a^2 = 2$, which again has no solution in **Q**.

2. Factor $x^4 + 1$ into irreducible factors in $\mathbf{R}[x]$.

Answer: The same analysis as in the previous question works, up until the final paragraph. Now the equation $a^2 = 2$ indeed has solutions. Set $a = \sqrt{2}$, and then $c = -\sqrt{2}$, and b = d = 1. We see that $x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$.

3. Factor $x^4 + 1$ into irreducible factors in $\mathbf{C}[x]$.

Answer: Finding the four roots of $x^4 + 1$ is the same as solving the equation $x^4 + 1 = 0$, or $x^4 = -1 = e^{\pi i} = e^{3\pi i} = e^{5\pi i} = e^{7\pi i}$. The roots are

$$\begin{aligned} x &= e^{\pi i/4} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \\ x &= e^{3\pi i/4} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \\ x &= e^{5\pi i/4} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \\ x &= e^{7\pi i/4} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \end{aligned}$$

and so

$$x^{4} + 1 = \left(x - \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)\right) \left(x - \left(\frac{-\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)\right) \left(x - \left(\frac{-\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)\right) \left(x - \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right)\right)$$

4. Factor $x^4 + 1$ into irreducible factors in $\mathbb{Z}/2\mathbb{Z}[x]$.

Answer: This one is done by trial and error, and we end up with $x^4 + 1 = (x+1)^4$ in $\mathbf{F}_2[x]$.