Mathematics 216
Robert Gross
Homework 29
Answers

1. Factor $x^{4}+1$ into irreducible factors in $\mathbf{Q}[x]$.

Answer: We know that $c^{4}+1$ is always positive if $c \in \mathbf{Q}$, and therefore $x^{4}+1$ has no linear factor $x-c$.

Now, suppose that $x^{4}+1=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$. We compute that $\left(x^{2}+a x+b\right)\left(x^{2}+\right.$ $c x+d)=x^{4}+(a+c) x^{3}+(a c+b+d) x^{2}+(b c+a d) x+b d$, leading to the four equations:

$$
\begin{align*}
a+c & =0 \tag{1}\\
a c+b+d & =0 \tag{2}\\
b c+a d & =0 \tag{3}\\
b d & =1 \tag{4}
\end{align*}
$$

Take $c=-a$ from (1), and substitute into (3) to get $a(-b+d)=0$. The possibilities are $a=0$ or $b=d$.

If $a=0$, then (1) says that $c=0$. Then (2) implies that $b=-d$. Substitution into (4) means that $-b^{2}=1$, which has no solution in \mathbf{Q}.

If $b=d$, then (4) means that $b^{2}=1$, and so $b= \pm 1$. Consider first $b=-1$. Substitution into (2) implies $-a^{2}-2=0$, or $a^{2}=-2$, which has no solution in \mathbf{Q}.

Finally, if $b=1$, we have $a^{2}=2$, which again has no solution in \mathbf{Q}.
2. Factor $x^{4}+1$ into irreducible factors in $\mathbf{R}[x]$.

Answer: The same analysis as in the previous question works, up until the final paragraph. Now the equation $a^{2}=2$ indeed has solutions. Set $a=\sqrt{2}$, and then $c=-\sqrt{2}$, and $b=d=1$. We see that $x^{4}+1=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+1\right)$.
3. Factor $x^{4}+1$ into irreducible factors in $\mathbf{C}[x]$.

Answer: Finding the four roots of $x^{4}+1$ is the same as solving the equation $x^{4}+1=0$, or $x^{4}=-1=e^{\pi i}=e^{3 \pi i}=e^{5 \pi i}=e^{7 \pi i}$. The roots are

$$
\begin{aligned}
& x=e^{\pi i / 4}=\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2} \\
& x=e^{3 \pi i / 4}=-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2} \\
& x=e^{5 \pi i / 4}=-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2} \\
& x=e^{7 \pi i / 4}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}
\end{aligned}
$$

and so

$$
x^{4}+1=\left(x-\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)\right)\left(x-\left(\frac{-\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)\right)\left(x-\left(\frac{-\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)\right)\left(x-\left(\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)\right)
$$

4. Factor $x^{4}+1$ into irreducible factors in $\mathbf{Z} / 2 \mathbf{Z}[x]$.

Answer: This one is done by trial and error, and we end up with $x^{4}+1=(x+1)^{4}$ in $\mathbf{F}_{2}[x]$.

