Mathematics 216
Robert Gross
Homework 30
Due April 23, 2012

1. Let p be an odd prime. Show that in $\mathbf{F}_{p}[x]$, the polynomial $x^{p-1}-1$ factors as

$$
x^{p-1}-1 \equiv(x-1)(x-2)(x-3) \cdots(x-(p-2))(x-(p-1))
$$

2. Substitute $x \equiv 0$ into this factorization to derive a congruence involving ($p-1$)!.
3. Show that in $\mathbf{Z} / 12 \mathbf{Z}[x]$, there are two different ways to factor the polynomial $x^{2}-x$ into linear factors.
