Mathematics 216 Robert Gross Homework 30 Due April 23, 2012

1. Let p be an odd prime. Show that in $\mathbf{F}_p[x]$, the polynomial $x^{p-1} - 1$ factors as

 $x^{p-1} - 1 \equiv (x-1)(x-2)(x-3)\cdots(x-(p-2))(x-(p-1))$

2. Substitute $x \equiv 0$ into this factorization to derive a congruence involving (p-1)!.

3. Show that in $\mathbb{Z}/12\mathbb{Z}[x]$, there are two different ways to factor the polynomial $x^2 - x$ into linear factors.