Mathematics 216
Robert Gross
Homework 30
Answers

1. Let p be an odd prime. Show that in $\mathbf{F}_{p}[x]$, the polynomial $x^{p-1}-1$ factors as

$$
x^{p-1}-1 \equiv(x-1)(x-2)(x-3) \cdots(x-(p-2))(x-(p-1))
$$

Answer: Let $f(x)=x^{p-1}-1$. Fermat's Little Theorem tells us that $f(1)=f(2)=\cdots=$ $f(p-1)=0$, and therefore we know that $x-1, x-2, \cdots, x-(p-1)$ are all factors of $x^{p-1}-1$. Because those irreducible factors are all unequal, we know that their product must divide $x^{p-1}-1$. We can therefore write

$$
x^{p-1}-1 \equiv g(x)(x-1)(x-2)(x-3) \cdots(x-(p-1)) .
$$

Now, the left-hand side has degree $p-1$, and the right hand side has degree $p-1+\operatorname{deg}(g)$. That shows that $g(x)$ must be a constant. Now, comparing the coefficients of x^{p-1} says that $g(x)=1$, and we have the desired result.
2. Substitute $x \equiv 0$ into this factorization to derive a congruence involving $(p-1)$!. Answer: Substitute $x=0$, and we have

$$
-1 \equiv(-1)(-2)(-3) \cdots(-(p-1))=(-1)^{p-1}(p-1)!.
$$

Because p is an odd prime, $p-1$ is even, so we have

$$
(p-1)!\equiv-1 \quad(\bmod p) .
$$

This result is called Wilson's Theorem.
3. Show that in $\mathbf{Z} / 12 \mathbf{Z}[x]$, there are two different ways to factor the polynomial $x^{2}-x$ into linear factors.
Answer: This is trial and error. One factorization is obviously $x^{2}-x=x(x-1)$. A bit of work also gives $x^{2}-x \equiv(x-4)(x-9)$.

