Mathematics 216
Robert Gross
Homework 31
Answers

1. Suppose that $f(x), g(x) \in \mathbf{C}[x]$ are two monic polynomials, with $\operatorname{deg}(f)=\operatorname{deg}(g)=n \geq 1$. Suppose also that $f(1)=g(1), f(2)=g(2), \ldots, f(n)=g(n)$. Show that $f(x)=g(x)$. Hint: Let $h(x)=f(x)-g(x)$. What is the degree of h ? What are some of its roots?
Answer: Let $h(x)=f(x)-g(x)$. Because $f(x)$ and $g(x)$ are both monic, we know that either $h(x)=0$ or $\operatorname{deg}(h)<n$. We also know that $h(1)=h(2)=\cdots=n(n)=0$, so $h(x)$ has at least n roots. The only conclusion is that $h(x)=0$, which says that $f(x)=g(x)$.
2. Suppose that we remove the assumption that $f(x)$ and $g(x)$ are monic in the previous problem. Show by example that we can no longer conclude that $f(x)=g(x)$.
Answer: Suppose that $f(x)=x^{2}-3 x+2$ and $g(x)=2 x^{2}-6 x+4$. Then $f(1)=f(2)=0$, and $g(1)=g(2)=0$. But $f(x) \neq g(x)$.
3. Factor $x^{4}+x^{2}+1$ into irreducible factors in $\mathbf{Q}[x]$.

Answer: We know that $f(x)=x^{4}+x^{2}+1$ has no roots in \mathbf{Q} because we know that $f(a)>0$ for every $a \in \mathbf{Q}$. The only possible factorization is $x^{4}+x^{2}+1=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$, and we can assume that $a, b, c, d \in \mathbf{Z}$. Equating coefficients yields

$$
\begin{aligned}
a+c & =0 \\
a c+b+d & =1 \\
a d+b c & =0 \\
b d & =1
\end{aligned}
$$

The final equation says that either $b=d=1$ or $b=d=-1$. Try $b=d=-1$ first, and then we have $a c=3$ and $a+c=0$, and those two equations are contradictory. Try $b=d=1$, and we have $a c=-1$ and $a+c=0$, with solution $a=1$ and $c=-1$. We can now see that $x^{4}+x^{2}+1=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$.
4. Factor $x^{4}+x^{2}+1$ into irreducible factors in $\mathbf{F}_{2}[x]$.

Answer: Let $f(x)=x^{4}+x^{2}+1$. We see that $f(0)=1$ and $f(1)=1$, so there are no linear factors. We also know that $x^{4}+x^{2}+1=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)=\left(x^{2}+x+1\right)^{2}$, and that is as far as the polynomial can be factored.
5. Factor $x^{4}+x^{2}+1$ into irreducible factors in $\mathbf{F}_{7}[x]$.

Answer: Again, we have $x^{4}+x^{2}+1=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$. Now, however, the quadratic polynomials factor further. The first factor has roots 3 and 5 , and the second factor has roots 2 and 4. Hence, $x^{4}+x^{2}+1=(x-3)(x-5)(x-2)(x-4)$.

