Mathematics 235

Examination 1
February 18, 2011

1. (20 points) Consider the following linear programming problem:

Maximize $5 x+3 y$ subject to:

$$
\begin{aligned}
x+3 y & \leq 15 \\
x-2 y & \leq 0 \\
2 x+y & \leq 10 \\
x, y & \geq 0
\end{aligned}
$$

a. Graph the feasible region for this problem. Find the coordinates of all of the corner points of the region.
b. Find the optimal solution to this problem, using either the corner point method or graphing an isoprofit line. State the values of x, y, and the objective function.
Answer: The graph looks like:

The corner points are $(0,0),(0,5),(3,4)$, and $(4,2)$. The value of the objective function at each of these points is:

x	0	0	3	4
y	0	5	4	2
$5 x+3 y$	0	15	27	26

The optimal solution occurs when $x=3$ and $y=4$, and the value of the objective function is 27 .
2. (20 points) Rob's Select Whiskey Company sells two different types of whiskey: regular and premium. Both are manufactured by blending raw alcohol, barrel-aged whiskey, flavoring extract, and caramel coloring, and both are sold in 750 ml bottles.

A bottle of regular whiskey consists of 500 ml of alcohol, 240 ml of aged whiskey, 8 ml of caramel, and 2 ml of flavoring extract. A bottle of premium whiskey consists of 100 ml of alcohol, 645 ml of aged whiskey, 1 ml of caramel, and 4 ml of flavoring extract. The profit on a bottle of regular whiskey is $\$ 3.45$. The profit on a bottle of premium whiskey is $\$ 4.80$.

There are 40 L of raw alcohol, 50 L of barrel-aged whiskey, 10 L of caramel, and 2 L of flavoring extract available. (There are 1000 ml in 1L.)

Formulate a linear programming model to help Rob's Select maximize profit. Your model should clearly define all decision variables, state the objective function, and include all relevant constraints.
Answer: Let

$$
\begin{aligned}
& r=\text { number of bottles of regular manufactured } \\
& p=\text { number of bottles of premium manufactured }
\end{aligned}
$$

We need to maximize $3.45 r+4.80 p$ given
Raw alcohol:

$$
\begin{aligned}
500 r+100 p & \leq 40 \cdot 1000 \\
240 r+645 p & \leq 50 \cdot 1000 \\
8 r+p & \leq 10 \cdot 1000 \\
2 r+4 p & \leq 2 \cdot 1000
\end{aligned}
$$

Aged whiskey:
Caramel:
3. (20 points) Giselle's Perfumerie sells perfume, bath water, and eau de cologne by blending together alcohol and scents. Perfume contains is 90% alcohol and 10% scents. Bath water is 85% alcohol and 15% scents. Eau de cologne is 80% alcohol and 20% scents. The respective profits on the three products are $\$ 1.20, \$ 1.10$, and $\$ 0.95$ per 1L bottle. Giselle's has on hand right now $5,000 \mathrm{~L}$ of alcohol and 750 ml of scent. Note: $1 \mathrm{~L}=1000 \mathrm{ml}$.

Here is an incomplete Excel spreadsheet that contains my partial solution:

	A	B	C	D
$\mathbf{1}$	Giselle's			
$\mathbf{2}$				
$\mathbf{3}$		Alcohol	Scents	Profit
$\mathbf{4}$	Perfume	0.90	0.10	
$\mathbf{5}$	Bath water		0.15	1.10
$\mathbf{6}$	Eau de cologne		0.20	0.95
$\mathbf{7}$				
$\mathbf{8}$		Amount		
$\mathbf{9}$	Perfume			
$\mathbf{1 0}$	Bath water			
$\mathbf{1 1}$	Eau de cologne			
$\mathbf{1 2}$				Available
$\mathbf{1 3}$	Alcohol		$<=$	5000
$\mathbf{1 4}$	Scent			
$\mathbf{1 5}$				
$\mathbf{1 6}$				
$\mathbf{1 7}$	Profit:			

Your job is to finish the spreadsheet by filling in the missing entries. If you think that the cells should not have any entries, write the words "No entry" in the cell. No credit will be given for any cells left completely blank.
Answer:

Cell	Entry
D4	1.20
B5	0.85
B6	0.80
B9	No entry (Solver will compute)
B10	No entry (Solver will compute)
B11	No entry (Solver will compute)
B13	=SUMPRODUCT (B4:B6, B9:B11)
B14	=SUMPRODUCT(C4:C6, B9:B11)
D14	0.750
B17	=SUMPRODUCT(D4:D6,B9:B11)

4. (20 points) Corazzo's manufactures pork sausage in 2,000-pound batches by blending pork, beef, and filler. The cost of pork is $\$ 2.50 / \mathrm{lb}$, the cost of beef is $\$ 1.80 / \mathrm{lb}$, and the cost of filler is $\$ 1.00 / \mathrm{lb}$. Each batch must contain:
5. At least 800 pounds of pork
6. At least 300 pounds of beef
7. No more than 30% filler.

I wrote an Excel spreadsheet to solve the problem of making a batch of sausage at minimal cost. The resulting sensitivity report is:

Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
Pork	800	0	2.50	$1 \mathrm{E}+30$	0.7
Beef	600	0	1.80	0.7	0.8
Filler	600	0	1.00	0.8	1E+30
Constraints					
Name	$\begin{aligned} & \text { Final } \\ & \text { Value } \end{aligned}$	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
Beef minimum	600	0.00	300	300	1E+30
Pork minimum	800	0.70	800	300	800
Filler maximum	600	-0.80	600	300	600
Batch size	2000	1.56	2000	$1 \mathrm{E}+30$	428.5714

Based on this sensitivity report, write your answers to the following questions on the facing page or the back of this page. You may not be able to answer all of these questions with the information available; in that case, indicate that no answer is possible.
a. What is the optimal solution to this problem? In other words, how should Corazzo's put together a 2,000-pound batch of sausage in order to minimize costs, and what is the resulting cost of the batch of sausage?
b. Which constraints are binding?

Each of the following questions poses an independent "what-if" scenario.

c. If the minimum amount of beef in each batch changed to 200 pounds, say as much as possible about what would happen to the cost of a batch and the optimal solution.
d. If the minimum amount of pork in each batch changed to 1,000 pounds, say as much as possible about what would happen to the cost of a batch and the optimal solution.
e. Suppose that the cost of a pound of pork changed to $\$ 2 / \mathrm{lb}$. Say as much as possible about what would happen to the cost of a batch of sausage and the optimal solution.
f. Suppose that the cost of a pound of beef changed to $\$ 1.50 / \mathrm{lb}$. Say as much as possible about what would happen to the cost and the optimal solution.
g. Suppose that the batch size decreased to 1,500 pounds, without changing the minimum requirements for pork and beef or the maximum requirement for filler. What would be the new minimal cost of a batch of sausage, and what happens to the optimal solution?
h. Suppose that the batch size increased to 2,500 pounds, without changing the minimum requirements for pork and beef or the maximum requirement for filler. What would be the new minimal cost of a batch of sausage, and what happens to the optimal solution?

Answer: (a) The optimal solution is to make a batch of sausage from 800 lb of pork, 600 lb of beef, and 600 lb of filler, for a total cost of $\$ 3680$.
(b) The binding constraints are the pork minimum of 8001 l , the filler maximum of 30%, and (of course) the constraint that each batch must consist of 2000lb.
(c) Decreasing the minimum amount of beef to 200lb is within the allowable decrease. Because this is a surplus constraint, the solution will not change, nor will the cost.
(d) Increasing the minimum amount of pork to 1000lb is within the allowable increase. The optimal solution will change unpredictably (though we of course know that it will include at least 1000lb of pork), and the cost will increase by $200 \cdot 0.70=\$ 140$.
(e) Changing the cost of pork to $\$ 2 / \mathrm{lb}$ is within the allowable decrease. The optimal solution will not change, and the cost of a batch of sausage will decrease to $\$ 3280$.
(f) Changing the cost of beef to $\$ 1.50 / \mathrm{lb}$ is within the allowable decrease. The optimal solution will not change, and the cost of a batch of sausage will decrease to $\$ 3500$.
(g) A change in the batch size to 1500 lb is outside of the allowable decrease on batch size. No prediction can be made about the optimal solution or cost, though clearly the cost will decrease.
(h) A change in the batch size to 25001 lb is within the allowable increase. The optimal solution will change unpredictably, and the cost of a batch will increase by $500 \cdot 1.56=\$ 780$.
5. (20 points) Consider the following linear programming problem:

Maximize $4 x+7 y$ subject to:

$$
\begin{aligned}
5 x+2 y & \leq 30 \\
x+y & \leq 8 \\
x+3 y & \leq 18 \\
x, y & \geq 0
\end{aligned}
$$

When I solved the problem, I found that the optimal solution occurs when $x=3$ and $y=5$.

$$
5 x+2 y=30
$$

a. Suppose that the coefficient of y in the objective function changes. If we write the objective function as $4 x+C y$, for what range of values of C will the optimal solution remain $x=3$ and $y=5$?
b. What is the shadow price of the constraint $x+3 y \leq 18$? For what range of values on the right-hand side of the constraint is this shadow price valid?
Answer: (a) The binding constraints are $x+3 y \leq 18$, with slope $-\frac{1}{3}$ and $x+y \leq 8$, with slope -1 . The slope of an isoprofit line of the form $4 x+C y=K$ is $-\frac{4}{C}$. We therefore have

$$
\begin{aligned}
-1 & \leq-\frac{4}{C} \leq-\frac{1}{3} \\
1 & \geq \frac{4}{C} \geq \frac{1}{3} \\
1 & \leq \frac{C}{4} \leq 3 \\
4 & \leq C \leq 12
\end{aligned}
$$

If you prefer, you can say that the coefficient of y has an allowable decrease of 3 and an allowable increase of 5.
(b) We set $x+3 y=18+\lambda$ and solve simultaneously with $x+y=8$. Subtraction yields $2 y=10+\lambda$, or $y=5+\frac{1}{2} \lambda$. We have $x=8-y=8-\left(5+\frac{1}{2} \lambda\right)=3-\frac{1}{2} \lambda$. Finally, we compute $4 x+7 y$ and get $4\left(3-\frac{1}{2} \lambda\right)+7\left(5+\frac{1}{2} \lambda\right)=47+\frac{3}{2} \lambda$, so the shadow price of the constraint is $\frac{3}{2}$.

To find the feasible range, we first use $x \geq 0$, implying $3-\frac{1}{2} \lambda \geq 0$, or $6 \geq \lambda$. To get the lower bound, we substitute into $5 x+2 y \leq 30$, getting $5\left(3-\frac{1}{2} \lambda\right)+2\left(5+\frac{1}{2} \lambda\right) \leq 30$, implying $25-\frac{3}{2} \lambda \leq 30$. We then get $-\frac{3}{2} \lambda \leq 5$, meaning that $\lambda \geq-\frac{10}{3} \approx-3.333$.

Grade	Number of people
97	2
95	1
93	1
91	1
90	1
87	1
86	3
84	1
83	1
82	2
80	1
77	2
76	1
73	1
72	1
71	1
69	1
65	1
59	1

Mean: 81.58
Standard deviation: 9.87

