Mathematics 235 Robert Gross Homework 2 Answers

- 1. Consider the following linear programming problem: Maximize 2x + 3y subject to:
- (a) Using *Excel* and Solver, find the optimal solution and the value of the objective function for that optimal solution.
- (b) Determine the amount of slack or surplus for each constraint. Write out this part of the solution in sentences.

Answer: The answer, according to the spreadsheet, is that the maximum occurs when x = 8.33 and y = 6.67, and the value of the objective function is 36.67. The constraint $x \le 15$ has $15 - \frac{25}{3} = \frac{20}{3} \approx 6.67$ slack. The constraint 2x + 5y = 50 is binding. The constraint x + y = 15 is binding. The constraint $3x + y \le 35$ has $\frac{10}{3} \approx 3.33$ slack.

2. Consider the following linear programming problem: Minimize 4x + 5y subject to:

$$2x + 3y \ge 30$$

$$x + 5y \ge 20$$

$$2x - y \ge 0$$

$$x, y \ge 0$$

- (a) Using *Excel* and Solver, find the optimal solution and the value of the objective function for that optimal solution.
- (b) Determine the amount of slack or surplus for each constraint. Write out this part of the solution in sentences.

Answer: Excel and Solver report that the minimum value occurs when $x = \frac{15}{4} = 3.75$ and $y = \frac{15}{2} = 7.5$, and the value of the objective function is 52.5. The constraint $2x + 3y \ge 30$ is binding. The constraint $x + 5y \ge 20$ has a surplus of $\frac{85}{4} = 21.25$. The constraint $2x - y \ge 0$ is binding.

3. **Ralph** loves steak and potatoes so much that he has decided to consume only those two foods for the rest of his life. (Ralph is a stubborn teen-ager.) He is aware that this is not the healthiest possible choice of diet, so he wants to satisfy least some key nutritional requirements. He has obtained this nutrition and cost information:

Grams of Ingredient per Serving				
			Daily	
			Requirement	
Ingredient	Steak	Potatoes	$({\rm grams})$	
Carbohydrate	5	15	≥ 50	
Protein	20	5	≥ 40	
Fat	15	2	≤ 60	
Cost per serving	\$4	\$2		

Ralph wishes to find the number of servings of each food (possibly fractional) to satisfy these three dietary requirements at minimal cost.

- (a) Formulate a mathematical model for this problem.
- (b) Find the optimal solution using *Excel* and Solver. How many servings of steak and how many servings of potatoes should Ralph eat each day?

Answer: Let

s = the number of servings of steak p = the number of servings of potatoes

We need to minimize 4s + 2p given

Carbohydrates:	$5s + 15p \ge 50$
Protein:	$20s + 5p \ge 40$
Fat:	$15s + 2p \le 60$

Excel reports that the optimal solution is to eat $\frac{14}{11}$ servings of steak and $\frac{32}{11}$ servings of potatoes for a cost of approximately \$10.91.

4. **Peabody Manufacturing** has 2 production lines to make tents. Production line A has a capacity of 25 tents/hour, and production line B has a capacity of 40 tents/hour. Production line A uses 40 yards of cotton/hour and production line B uses 50 yards of cotton/hour. Each tent can be sold for \$18. Production line A is available for no more than 15 hours and production line B is available for at most 10 hours; moreover, each production line must be used for a minimum of 5 hours. There are 1000 yards of cotton available for use, at a cost of \$6/yard. In addition to the cost of the cotton, the cost of operating production line A is \$50/hour, and the cost of operating production line B is \$75/hour.

- (a) Formulate a mathematical model that maximizes *profit*, meaning revenue minus all costs.
- (b) Find the optimal solution using *Excel* and *Solver*. Be sure to write your solution in full sentences.

Answer: Set

a = number of hours that production line A is used b = number of hours that production line B is used

Tent production is therefore 25a + 40b, so revenue is 18(25a + 40b) = 450a + 720b. The cotton usage is 40a + 50b, so the cost of cotton is 6(40a + 50b) = 240a + 300b. The cost of running the production lines is 50a + 75b. Therefore, the objective function is (450a + 720b) - (240a + 300b) - (50a + 75b) = 160a + 345b, and we wish to maximize this function. (You can let *Excel* do this algebra for you, of course; see the posted spreadsheet.)

The constraints are:

Minimum A:	$a \ge 5$
Minimum B:	$b \ge 5$
Maximum A:	$a \le 15$
Maximum B:	$b \leq 10$
Cotton available:	$40a + 50b \le 1000$

Excel and *Solver* report that the optimal solution is to run assembly line A for 12.5 hours and assembly line B for 10 hours, for a total profit of \$5,450. The revenue is \$12,825, the cost of the cotton is \$6,000, and the cost of running the two production lines is \$1,375.