Examination 1

Answers

1. (18 points) Suppose that $2 \frac{d x}{d t}+x+1=0$, and $x(0)=3$. Find an explicit expression for x in terms of t. Answer: We have

$$
\begin{aligned}
2 \frac{d x}{d t} & =-x-1 \\
\int \frac{d x}{x+1} & =-\frac{1}{2} \int d t \\
\log (x+1) & =-\frac{t}{2}+C \\
x+1 & =D e^{-t / 2} \\
x & =D e^{-t / 2}-1
\end{aligned}
$$

Now, substitution of $t=0$ and $x=3$ yields $D=4$, so the complete solution is $x=4 e^{-t / 2}-1$.
2. (18 points) Suppose that $\frac{d y}{d x}=\sin (y-x)$, and $y(0)=1$. Find an implicit definition for y in terms of x. Answer: Write $u=y-x$, so that $y=x+u$ and $\frac{d y}{d x}=1+\frac{d u}{d x}$. The differential equation now becomes $1+\frac{d u}{d x}=\sin u$, or

$$
\begin{aligned}
\frac{d u}{d x} & =\sin u-1 \\
\int d x & =-\int \frac{d u}{1-\sin u}=-\int\left(\frac{1+\sin u}{1+\sin u}\right) \frac{d x}{1-\sin u}=-\int \frac{(1+\sin u) d x}{1-\sin ^{2} u} \\
& =-\int \frac{(1+\sin u) d x}{\cos ^{2} u}=-\int\left(\frac{1}{\cos ^{2} u}+\frac{\sin u}{\cos ^{2} u}\right) d u \\
& =-\tan u-\sec u
\end{aligned}
$$

Therefore, the equation is $x+C=-\tan u-\sec u=-\tan (y-x)-\sec (y-x)$. Substitute $x=0$ and $y=1$, and we get $C=-\tan 1-\sec 1$, and therefore the equation is $x-\tan 1-\sec 1=\tan (y-x)-\sec (y-x)$.
3. (18 points) Suppose that $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$ and $y(1)=2$. Find an explicit expression for y in terms of x. Answer: The equation is the quotient of homogeneous polynomials, so we substitute $y=u x$ and $\frac{d y}{d x}=u+x \frac{d u}{d x}$. We get

$$
\begin{aligned}
u+x \frac{d u}{d x} & =\frac{x^{2}+x^{2} u^{2}}{2 x^{2} u}=\frac{1+u^{2}}{2 u} \\
x \frac{d u}{d x} & =\frac{1+u^{2}}{2 u}-u=\frac{1-u^{2}}{2 u} \\
\int \frac{2 u}{1-u^{2}} d u & =\int \frac{d x}{x} \\
\int \frac{2 u}{u^{2}-1} d u & =-\int \frac{d x}{x} \\
\log \left(u^{2}-1\right) & =-\log x+C \\
u^{2}-1 & =\frac{D}{x} \\
u^{2} & =1+\frac{D}{x}=\frac{D+x}{x}
\end{aligned}
$$

$$
\begin{aligned}
\frac{y^{2}}{x^{2}} & =\frac{D+x}{x} \\
y^{2} & =x^{2}+D x \\
y & =\sqrt{x^{2}+D x}
\end{aligned}
$$

Now, we substitute $x=1$ and $y=2$ to get $\sqrt{1+D}=2$, or $1+D=4$, and so $D=3$. The solution is $y=\sqrt{x^{2}+3 x}$.
4. (20 points) Suppose that $\frac{d y}{d t}+y=t y^{2}$, with $y(0)=1$. Make the substitution $x=y^{-1}$ and solve the differential equation, finding an explicit expression for y in terms of t.
Answer: If $x=y^{-1}$, then $y=x^{-1}$, and so $\frac{d y}{d t}=\frac{d\left(x^{-1}\right)}{d t}=-x^{-2} \frac{d x}{d t}$. The equation becomes

$$
\begin{aligned}
-x^{-2} \frac{d x}{d t}+x^{-1} & =t x^{-2} \\
\frac{d x}{d t}-x & =-t
\end{aligned}
$$

We use e^{-t} as an integrating factor:

$$
\begin{aligned}
e^{-t} \frac{d x}{d t}-x e^{-t} & =-t e^{-t} \\
\frac{d}{d t}\left(x e^{-t}\right) & =-t e^{-t} \\
x e^{-t} & =t e^{-t}+e^{-t}+C \\
x & =t+1+C e^{t} \\
y & =\frac{1}{t+1+C e^{t}}
\end{aligned}
$$

Substitute $t=0$ and $y=1$, and we get $1=\frac{1}{1+C}$, so $C=0$, and we have $y=\frac{1}{t+1}$.
5. (26 points) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+13 y=e^{-2 x}$ for y as a function of x.

Answer: We start by solving the auxiliary equation $m^{2}+4 m+13=0$. We learn that $m=\frac{-4 \pm \sqrt{16-52}}{2}=$ $\frac{-4 \pm \sqrt{-36}}{2}=\frac{-4 \pm 6 i}{2}=-2 \pm 3 i$. Therefore, $y_{h}=e^{-2 x}(A \cos 3 x+B \sin 3 x)$.

Use undetermined coefficients to compute $y_{p}=C e^{-2 x}$. We compute $y_{p}^{\prime}=-2 C e^{-2 x}$ and $y_{p}^{\prime \prime}=4 C e^{-2 x}$. We have $4 C e^{-2 x}+4(-2) C e^{-2 x}+13 C e^{-2 x}=e^{-2 x}$. Multiply by $e^{2 x}$, and the result is $9 C=1$, or $C=\frac{1}{9}$. Therefore, the general solution is $y=e^{-2 x}\left(\frac{1}{9}+A \cos 3 x+B \sin 3 x\right)$.

Grade	Number of
90	1
87	1
82	1
77	2
76	1
72	1
71	1
69	1
64	1
51	2
39	1

Mean: 69.69
Standard deviation: 14.39

