MT305.01: Advanced Calculus for Science Majors

Examination 2

Answers

1. (20 points) Solve

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=2 \sin 2 t
$$

Answer: This problem can be done many ways. Here's how to do it using undetermined coefficients.
We solve $x^{\prime \prime}+3 x^{\prime}+2 x=0$ by solving the auxiliary equation $r^{2}+3 r+2=0$ and finding that $r=-1$ and $r=-2$ are the two solutions. Therefore, the solution to the homogeneous equation is $x=A e^{-t}+B e^{-2 t}$.

We guess at a solution of the form $x=C \sin 2 t+D \cos 2 t$, and then $x^{\prime}=2 C \cos 2 t-2 D \sin 2 t$ and $x^{\prime \prime}=-4 C \sin 2 t-4 D \cos 2 t$. We have
$x^{\prime \prime}+3 x^{\prime}+2 x=(-4 C \sin 2 t-4 D \cos 2 t)+3(2 C \cos 2 t-2 D \sin 2 t)+2(C \sin 2 t+D \cos 2 t)=2 \sin 2 t$.
This leads to the two equations

$$
\begin{array}{r}
-2 C-6 D=2 \\
6 C-2 D=0
\end{array}
$$

Multiply the first equation by 3 and add, and we get $-20 D=6$, so $D=-\frac{3}{10}$ and $C=-\frac{1}{10}$.
Therefore, $x=A e^{-t}+B e^{-2 t}-\frac{1}{10} \sin 2 t-\frac{3}{10} \cos 2 t$.
2. (20 points) Solve

$$
\frac{d^{2} y}{d t^{2}}+9 y=\left\{\begin{array}{ll}
0 & 0 \leq t<1 \\
9(t-1) & 1 \leq t<2 \\
9 & 2 \leq t
\end{array} \quad y(0)=0, \quad y^{\prime}(0)=0\right.
$$

Answer: The simplest way to do this problem is using Laplace transforms. We have to express the right-hand side of the differential equations using step functions, and the result is

$$
(\mathscr{U}(t-1)-\mathscr{U}(t-2))(9)(t-1)+\mathscr{U}(t-2) 9=\mathscr{U}(t-1) 9(t-1)-\mathscr{U}(t-2)(9)(t-2)
$$

So we have

$$
\begin{aligned}
y^{\prime \prime}+9 y & =\mathscr{U}(t-1) 9(t-1)-\mathscr{U}(t-2)(9)(t-2) \\
\mathscr{L}\left(y^{\prime \prime}\right)+9 \mathscr{L}(y) & =9 \mathscr{L}(\mathscr{U}(t-1)(t-1))-9 \mathscr{L}(\mathscr{U}(t-2)(t-2)) \\
s^{2} Y+9 Y & =9\left(\frac{e^{-s}}{s^{2}}-\frac{e^{-2 s}}{s^{2}}\right) \\
Y & =9\left(\frac{e^{-s}}{s^{2}\left(s^{2}+9\right)}-\frac{e^{-2 s}}{s^{2}\left(s^{2}+9\right)}\right)
\end{aligned}
$$

Substitute $\frac{1}{s^{2}\left(s^{2}+9\right)}=\frac{1}{9}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+9}\right)$:

$$
\begin{aligned}
Y & =e^{-s}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+9}\right)-e^{-2 s}\left(\frac{1}{s^{2}}-\frac{1}{s^{2}+9}\right) \\
y & =\mathscr{U}(t-1)\left((t-1)-\frac{1}{3} \sin (3(t-1))\right)-\mathscr{U}(t-2)\left((t-2)-\frac{1}{3} \sin (3(t-2))\right) .
\end{aligned}
$$

The graph is

3. (20 points) Solve

$$
\frac{d^{2} y}{d t^{2}}+y=\sec t
$$

Answer: The homogeneous equation has general solution $y=A \cos t+B \sin t$. Set $y_{1}=\cos t, y_{2}=\sin t$, $y_{1}^{\prime}=-\sin t$, and $y_{2}^{\prime}=\cos t$, and variation of parameters tells us that $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, with

$$
\begin{aligned}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime} & =0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} & =\sec t
\end{aligned}
$$

We have

$$
\begin{aligned}
(-\sin t) u_{1}^{\prime}+(\cos t) u_{2}^{\prime} & =\sec t \\
(\cos t) u_{1}^{\prime}+(\sin t) u_{2}^{\prime} & =0
\end{aligned}
$$

Multiply the first equation by $\cos t$ and the second by $\sin t$:

$$
\begin{aligned}
(-\sin t \cos t) u_{1}^{\prime}+\left(\cos ^{2} t\right) u_{2}^{\prime} & =1 \\
(\sin t \cos t) u_{1}^{\prime}+\left(\sin ^{2} t\right) u_{2}^{\prime} & =0
\end{aligned}
$$

We get $u_{2}^{\prime}=1$, so $u_{2}=t$. If $u_{2}^{\prime}=1$, then $u_{1}^{\prime}=-(\sin t) u_{2}^{\prime} / \cos t=-\sin t / \cos t=-\tan t$, and then $u_{1}=\log (\cos t)$.

The general solution is $y=\cos t(\log (\cos t))+t \sin t+A \cos t+B \sin t$.
4. (20 points) Use Laplace transforms to show that

$$
(\cos t) *\left(\frac{1}{k} \sin (k t)\right)=(\sin t) *(\cos k t)
$$

You may assume that if $\mathscr{L}(f)=\mathscr{L}(g)$ and f and g are continuous, then $f=g$.
Answer: We know that

$$
\begin{aligned}
\mathscr{L}\left((\cos t) *\left(\frac{1}{k} \sin (k t)\right)\right) & =\mathscr{L}(\cos t) \mathscr{L}\left(\frac{1}{k} \sin (k t)\right)=\frac{s}{s^{2}+1}\left(\frac{1}{s^{2}+k^{2}}\right)=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+k^{2}\right)} \\
\mathscr{L}((\sin t) * \cos (k t)) & =\mathscr{L}(\sin t) \mathscr{L}(\cos (k t))=\left(\frac{1}{s^{2}+1}\right)\left(\frac{s}{s^{2}+k^{2}}\right)=\frac{s}{\left(s^{2}+1\right)\left(s^{2}+k^{2}\right)}
\end{aligned}
$$

The two functions have the same Laplace transforms and are continuous, and hence must be the same.
5. (20 points) Solve

$$
t^{2} \frac{d^{2} x}{d t^{2}}-5 t \frac{d x}{d t}+11 x=0
$$

Answer: We start by solving $t^{2} x^{\prime \prime}-5 t x^{\prime}+11 x=0$ by letting $x=t^{m}, x^{\prime}=m t^{m-1}$, and $x^{\prime \prime}=m(m-1) t^{m-2}$. We have $m(m-1)-5 m+11=0$, or $m^{2}-6 m+11=0$, and then $m=\frac{6 \pm \sqrt{36-44}}{2}=\frac{6 \pm \sqrt{-8}}{2}=3 \pm \sqrt{-2}$.
Our recipe now tells us that $x=t^{3}(A \cos \sqrt{2}(\log x)+B \sin \sqrt{2}(\log x))$.

Grade	Number of people
94	1
90	1
83	1
79	1
77	1
75	2
72	1
70	1
69	1
55	1
50	2

Mean: 72.23
Standard deviation: 13.27

