Examination 3

Answers

1. (25 points) Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}+4 y= \begin{cases}0 & 0 \leq t<\pi \\ 1 & \pi \leq t<2 \pi \\ 0 & 2 \pi \leq t\end{cases}
$$

with initial conditions $y(0)=1$ and $y^{\prime}(0)=1$.
Answer: Rewrite the equation in the form $y^{\prime \prime}+4 y=\mathscr{U}(t-\pi)-\mathscr{U}(t-2 \pi)$. Taking the Laplace transform now yields:

$$
s^{2} Y-s-1+4 Y=\frac{e^{-\pi s}-e^{-2 \pi s}}{s}
$$

which can be rearranged to give

$$
Y=\frac{s+1}{s^{2}+4}+\frac{e^{-\pi s}-e^{-2 \pi s}}{s\left(s^{2}+4\right)}
$$

Partial fractions yields

$$
\frac{1}{s\left(s^{2}+4\right)}=\frac{1}{4}\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)
$$

and so

$$
Y=\frac{s+1}{s^{2}+4}+\left(\frac{e^{-\pi s}-e^{-2 \pi s}}{4}\right)\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)
$$

Therefore,

$$
\begin{aligned}
y & =\mathscr{L}^{-1}(Y)=\mathscr{L}^{-1}\left(\frac{s+1}{s^{2}+4}\right)+\mathscr{L}^{-1}\left(\left(\frac{e^{-\pi s}-e^{-2 \pi s}}{4}\right)\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)\right) \\
& =\mathscr{L}^{-1}\left(\frac{s}{s^{2}+4}\right)+\frac{1}{2} \mathscr{L}^{-1}\left(\frac{2}{s^{2}+4}\right)+\mathscr{L}^{-1}\left(\left(\frac{e^{-\pi s}-e^{-2 \pi s}}{4}\right)\left(\frac{1}{s}-\frac{s}{s^{2}+4}\right)\right) \\
& =\cos (2 t)+\frac{1}{2} \sin (2 t)+\frac{1}{4}\left(\mathscr{L}^{-1}\left(\frac{e^{-\pi s}}{s}\right)-\mathscr{L}^{-1}\left(\frac{e^{-\pi s} s}{s^{2}+4}\right)-\mathscr{L}^{-1}\left(\frac{e^{-2 \pi s}}{s}\right)+\mathscr{L}^{-1}\left(\frac{e^{-2 \pi s} s}{s^{2}+4}\right)\right) \\
& =\cos (2 t)+\frac{1}{2} \sin (2 t)+\frac{1}{4}(\mathscr{U}(t-\pi)(1-\cos (2(t-\pi)))-\mathscr{U}(t-2 \pi)(1-\cos (2(t-2 \pi)))) \\
& =\cos (2 t)+\frac{1}{2} \sin (2 t)+\frac{1}{4}(\mathscr{U}(t-\pi)(1-\cos (2 t))-\mathscr{U}(t-2 \pi)(1-\cos (2 t))) \\
& = \begin{cases}\cos (2 t)+\frac{1}{2} \sin (2 t) & 0 \leq t<\pi \\
\cos (2 t)+\frac{1}{2} \sin (2 t)+\frac{1}{4}(1-\cos (2 t)) & \pi \leq t<2 \pi \\
\cos (2 t)+\frac{1}{2} \sin (2 t) & 2 \pi \leq t\end{cases}
\end{aligned}
$$

2. (25 points) Suppose we write the solution to the differential equation $y^{\prime \prime}+\left(x^{2}+1\right) y=0$, with initial conditions $y(0)=1$ and $y^{\prime}(0)=2$, in the form $y=\sum_{n \geq 0} c_{n} x^{n}$. Write out the first 5 non-zero terms in the series expansion for y.
Answer: We have $y^{\prime \prime}=\sum_{n \geq 0} n(n-1) c_{n} x^{n-2}=\sum_{n \geq 0}(n+2)(n+1) c_{n+2} x^{n}$ and $x^{2} y=\sum_{n \geq 0} c_{n} x^{n+2}=\sum_{n \geq 2} c_{n-2} x^{n}$. So we have

$$
\sum_{n \geq 0}(n+2)(n+1) c_{n+2} x^{n}+\sum_{n \geq 2} c_{n-2} x^{n}+\sum_{n \geq 0} c_{n} x^{n}=0
$$

We are given $c_{0}=1$ and $c_{1}=2$. The constant term in the series expansion now gives $2 c_{2}+c_{0}=0$, and so $c_{2}=-\frac{1}{2}$. The x-term gives $6 c_{3}+c_{1}=0$, and so $c_{3}=-\frac{1}{3}$. Finally, the x^{2}-term gives $12 c_{4}+c_{0}+c_{2}=0$, and so $c_{4}=-\frac{1}{24}$. The first 5 non-zero terms are therefore $1+2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{24}$.
3. (25 points) The two solutions of the differential equation $2 x y^{\prime \prime}+5 y^{\prime}+x y=0$ can both be written in the form $y=x^{r} \sum_{n \geq 0} c_{n} x^{n}$, for two different values of r, with $c_{0}=1$. Compute the two possible values of r.
Answer: We have

$$
\begin{aligned}
y & =\sum c_{n} x^{n+r} \\
x y & =\sum c_{n} x^{n+r+1} \\
5 y^{\prime} & =\sum 5(n+r) c_{n} x^{n+r-1} \\
2 x y^{\prime \prime} & =\sum 2(n+r)(n+r-1) c_{n} x^{n+r-1} \\
2 x y^{\prime \prime}+5 y^{\prime}+x y & =\sum 2(n+r)(n+r-1) c_{n} x^{n+r-1}+5(n+r) c_{n} x^{n+r-1}+c_{n} x^{n+r+1}=0
\end{aligned}
$$

The coefficient of x^{r-1} is $c_{0}(2 r(r-1)+5 r)$, so we must have $2 r^{2}+3 r=0$. This gives $r=0$ and $r=-\frac{3}{2}$ as the two possible values for r.
4. (25 points) Write out the first 5 non-zero terms in the Fourier expansion of the function $f(x)=|\sin x|$ for $-\pi \leq x \leq \pi$.
Answer: The function $f(x)$ is even, and so the only terms which appear in the Fourier expansion are the constant term and the ones involving cosines. We compute

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} \sin x d x=\frac{4}{\pi} \\
a_{1} & =\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos x d x=\left.\frac{1}{\pi} \sin ^{2} x\right|_{0} ^{\pi}=0 \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos n x d x=\left(\frac{2}{\pi}\right)\left(\frac{1}{n^{2}-1}\right)[n \sin x \sin n x+\cos x \cos n x]_{0}^{\pi} \\
& =\left(\frac{2}{\pi}\right)\left(\frac{1}{n^{2}-1}\right)\left((-1)^{n+1}-1\right)
\end{aligned}
$$

and so $a_{2}=\frac{-4}{3 \pi}, a_{3}=0, a_{4}=\frac{-4}{15 \pi}, a_{5}=0, a_{6}=\frac{-4}{35 \pi}, a_{7}=0$, and $a_{8}=\frac{-4}{63 \pi}$. We have

$$
|\sin x|=\frac{2}{\pi}-\frac{4}{\pi}\left(\frac{\cos 2 x}{3}+\frac{\cos 4 x}{15}+\frac{\cos 6 x}{35}+\frac{\cos 8 x}{63}+\cdots\right)
$$

Grade	Number of people
85	1
78	1
77	1
75	3
68	1
65	1
64	2
60	1
48	1
43	1

Mean: 67.46
Standard deviation: 11.58

