MT305.01: Advanced Calculus for Science Majors
Examination 4
Answers

1. (20 points) The Helmholtz equation is

$$
\nabla^{2} u=-k u
$$

In spherical coordinates,

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial u}{\partial \rho}+\frac{1}{\rho^{2}}\left(\frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial u}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}\right) .
$$

Write $u(\rho, \theta, \phi)=R(\rho) Y(\theta, \phi)$, and perform a separation of variables to get a partial differential equation for $Y(\theta, \phi)$ and an ordinary differential equation for $R(\rho)$. You should not try to solve either equation.
Answer: Write $u(\rho, \theta, \phi)=R(\rho) Y(\theta, \phi)$, and we have

$$
R^{\prime \prime} Y+\frac{2 R^{\prime} Y}{\rho}+\frac{R}{\rho^{2}}\left(\frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right)=-k R Y .
$$

Multiply by ρ^{2} and divide by $R Y$:

$$
\begin{aligned}
\frac{\rho^{2} R^{\prime \prime}}{R}+\frac{2 \rho R^{\prime}}{R}+\frac{1}{Y}\left(\frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right) & =-k \rho^{2} \\
\frac{1}{Y}\left(\frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right) & =-k \rho^{2}-\frac{\rho^{2} R^{\prime \prime}}{R}-\frac{2 \rho R^{\prime}}{R}
\end{aligned}
$$

Set both sides equal to $-\lambda$:

$$
\begin{align*}
\frac{1}{Y}\left(\frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right) & =-\lambda \\
\frac{\partial^{2} Y}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}+\lambda Y & =0 \tag{1}\\
-k \rho^{2}-\frac{\rho^{2} R^{\prime \prime}}{R}-\frac{2 \rho R^{\prime}}{R} & =-\lambda \\
\rho^{2} R^{\prime \prime}+2 \rho R^{\prime}+\left(k \rho^{2}-\lambda\right) R & =0 \tag{2}
\end{align*}
$$

For the record, the partial differential equation (1) leads to what are called spherical harmonics, and the ordinary differential equation (2) leads to spherical Bessel functions.
2. (20 points) Let n be a positive integer. Give the general solution of

$$
t^{2} \frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}-n(n+2) y=0
$$

in terms of n.
Answer: We write $y=t^{k}$, and get $k(k-1) t^{k}-k t^{k}-n(n+2) t^{k}=0$. Cancellation of t^{k} leads to $k^{2}-2 k-n(n+2)=0$. Factor to get $(k+n)(k-(n+2)=0$, with solutions $k=n+2$ and $k=-n$. The general solution is therefore $y=A t^{n+2}+B t^{-k}$.
3. (40 points) Give the complete solution of the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

if $0 \leq x \leq 5$, with initial and boundary conditions

$$
\begin{align*}
u(0, t) & =0 \tag{3}\\
u(5, t) & =0 \tag{4}\\
u(x, 0) & =0 \tag{5}\\
u_{t}(x, 0) & =f(x) \tag{6}
\end{align*}
$$

Be sure to explain carefully why you can eliminate various values of the separation constant λ.
Answer: Separate variables, and we have $u(x, t)=X(x) T(t)$. The differential equation becomes $X^{\prime \prime} T=\frac{1}{c^{2}} X T^{\prime \prime}$, or $\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{c^{2} T}=-\lambda$. Now, (1) says that $X(0)=0$ and (2) says that $X(5)=0$.

Consider the differential equation $X^{\prime \prime}+\lambda X=0$. If $\lambda=-\alpha^{2}$, we have $X=A \sinh \alpha x+$ $B \cosh \alpha x$. The equation $X(0)=0$ forces $B=0$. Because $\sinh x>0$ for $x>0$, we now apply $X(5)=0$ to conclude that $A=0$. If $\lambda=0$, we have $X^{\prime \prime}=A+B x$. Again, $X(0)=0$ tells us that $A=0$, and now $X(5)=0$ tells us that $B=0$.

We are left with $\lambda=\alpha^{2}$, and so $X^{\prime \prime}+\alpha^{2} X=0$ has solution $X=A \cos \alpha x+B \sin \alpha x$. Now $X(0)=0$ forces $A=0$, and $X(5)=0$ forces $\sin 5 \alpha=0$. This has solution $5 \alpha=n \pi$ for n any positive integer, and so $\alpha_{n}=n \pi / 5$. We have $T^{\prime \prime}+c^{2} \alpha_{n}^{2} T=0$ with solution $T=A \cos c \alpha_{n} t+B \sin c \alpha_{n} t$.

Condition (5) forces $T(0)=0$, implying that $A=0$. We now have $u_{n}(x, t)=A_{n}\left(\sin c \alpha_{n} t\right)\left(\sin \alpha_{n} x\right)$, and

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} A_{n} \sin \frac{c n \pi t}{5} \sin \frac{n \pi x}{5} \\
u_{t}(x, t) & =\sum_{n=1}^{\infty} A_{n} \frac{c n \pi}{5} \cos \frac{c n \pi t}{5} \sin \frac{n \pi x}{5} \\
f(x) & =\sum_{n=1}^{\infty} A_{n} \frac{c n \pi}{5} \sin \frac{n \pi x}{5}
\end{aligned}
$$

and the theory of Fourier series says that

$$
\begin{aligned}
A_{n} \frac{c n \pi}{5} & =\frac{2}{5} \int_{0}^{5} f(x) \sin \frac{n \pi x}{5} d x \\
A_{n} & =\frac{2}{c n \pi} \int_{0}^{5} f(x) \sin \frac{n \pi x}{5} d x
\end{aligned}
$$

4. (20 points) In polar coordinates, we have

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Solve Laplace's equation $\nabla^{2} u=0$ in the semicircular region described by $0 \leq r \leq 1$, $0 \leq \theta \leq \pi$,

with boundary conditions $u(1, \theta)=2$ for $0<\theta<\pi, u(r, 0)=0$ for $0<r<1$, and $u(r, \pi)=0$ for $0<r<1$.

Answer: We write $u(r, \theta)=R(r) \Theta(\theta)$, and get

$$
R^{\prime \prime} \Theta+\frac{1}{r} R^{\prime} \Theta+\frac{1}{r^{2}} R \Theta^{\prime \prime}=0
$$

Divide by $R \Theta$ and multiply by r^{2} :

$$
\begin{aligned}
\frac{r^{2} R^{\prime \prime}}{R}+\frac{r R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta} & =0 . \\
\frac{r^{2} R^{\prime \prime}}{R}+\frac{r R^{\prime}}{R} & =-\frac{\Theta^{\prime \prime}}{\Theta}=k .
\end{aligned}
$$

We have $\Theta^{\prime \prime}+k \Theta=0$. The boundary conditions require $\Theta(0)=0$ and $\Theta(\pi)=0$, and the same argument as in the previous problem forces $k=n^{2}$ for n a positive integer, and $\Theta(\theta)=\sin n \theta$.

We now have $r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0$. This is a Cauchy-Euler equation, with solution $R=A r^{n}+B r^{-n}$. We require the function $R(r)$ to be defined for $r=0$, meaning that $R_{n}(r)=a_{n} r^{n}, u_{n}(r, \theta)=a_{n} r^{n} \sin n \theta$, and

$$
u(r, \theta)=\sum_{n=1}^{\infty} a_{n} r^{n} \sin n \theta
$$

The equation $u(1, \theta)=2$ forces

$$
2=\sum_{n=1}^{\infty} a_{n} \sin n \theta
$$

with solution

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} 2 \sin n \theta d \theta=\frac{4}{\pi}\left[\frac{-\cos n \theta}{n}\right]_{0}^{\pi}=\frac{4}{\pi} \frac{1-(-1)^{n}}{n} .
$$

We have

$$
u(r, \theta)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{\pi n} r^{n} \sin n \theta=\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{r^{2 k+1} \sin (2 k+1) \theta}{2 k+1} .
$$

Grade	Number of people
100	1
94	1
90	2
89	1
85	1
84	1
82	1
67	1
58	1
55	1
53	1
52	1

Mean: 76.85
Standard deviation: 16.60

