MT305.01: Advanced Calculus for Science Majors
Examination 4
Answers

1. (20 points) The Helmholtz equation is
Viu = —ku.

In spherical coordinates,

Vu

o 20u 1 (0 eoston 1 o
C0p2  pdp  p2\ 002 sinf 00  sin?6 0¢?
Write u(p, 8, ¢) = R(p)Y (0, ¢), and perform a separation of variables to get a partial differen-

tial equation for Y (6, ¢) and an ordinary differential equation for R(p). You should not try
to solve either equation.

Answer: Write u(p, 8, ¢) = R(p)Y (6, ¢), and we have
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Multiply by p? and divide by RY:
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Set both sides equal to —A:
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For the record, the partial differential equation (1)) leads to what are called spherical harmonics,
and the ordinary differential equation leads to spherical Bessel functions.
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2. (20 points) Let n be a positive integer. Give the general solution of
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in terms of n.
Answer: We write y = t*, and get k(k — 1)t* — kt* — n(n + 2)t* = 0. Cancellation of ¢* leads
to k* — 2k — n(n + 2) = 0. Factor to get (k + n)(k — (n+2) = 0, with solutions k = n + 2
and k = —n. The general solution is therefore y = At"*2 + Bt=*.



3. (40 points) Give the complete solution of the wave equation

Pu 1 0%
9r? o
if 0 < x <5, with initial and boundary conditions
u(0,t) =0 (3)
u(5,t) =0 (4)
u(z,0) =0 (5)
ur(z,0) = f(x) (6)

Be sure to explain carefully why you can eliminate various values of the separation constant
A

Answer: Separate variables, and we have u(z,t) = X (x)T(t). The differential equation
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becomes X"T = 5 XT", or ))(( = ch = —\. Now, (1)) says that X(0) = 0 and (2) says that
X(5)=0.

Consider the differential equation X” + XX = 0. If A = —a?, we have X = Asinhaz +
B cosh ax. The equation X (0) = 0 forces B = 0. Because sinhx > 0 for > 0, we now apply
X (5) =0 to conclude that A =0. If A =0, we have X" = A+ Bz. Again, X(0) =0 tells us
that A = 0, and now X (5) = 0 tells us that B = 0.

We are left with A = a?, and so X” + o?X = 0 has solution X = Acosax + Bsinaxz.
Now X (0) = 0 forces A = 0, and X (5) = 0 forces sin 5 = 0. This has solution ba = nw
for n any positive integer, and so a,, = nn/5. We have T” + c*a?T = 0 with solution
T = Acosca,t + Bsin ca,t.

Condition () forces T'(0) = 0, implying that A = 0. We now have u,(x,t) = A, (sin ca,t)(sin a,,x),
and
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and the theory of Fourier series says that
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4. (20 points) In polar coordinates, we have
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Solve Laplace’s equation V2u = 0 in the semicircular region described by 0 < r < 1,
0<0<m,
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with boundary conditions u(1,6) =2 for 0 < 6 < 7, u(r,0) =0 for 0 < r < 1, and u(r,7) =0
for 0 <r < 1.
Answer: We write u(r,0) = R(r)©(0), and get
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Divide by RO and multiply by r:
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We have ©” + k© = 0. The boundary conditions require ©(0) = 0 and ©(7) = 0, and
the same argument as in the previous problem forces k = n? for n a positive integer, and
©(0) = sinnb.

We now have m?R” + rR' — n?R = 0. This is a Cauchy-Euler equation, with solution
R = Ar™ + Br=". We require the function R(r) to be defined for r = 0, meaning that
R,(r) = a,r™, uy(r,0) = a,r™sinnd, and

u(r,0) = a,r"sinnf
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The equation u(1,0) = 2 forces
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We have
41 - (-1, . 8 & r?*tlsin(2k +1)0
u(r, 0) nz::l — rsinn 77;;3 1



Grade Number of people
100
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Mean: 76.85
Standard deviation: 16.60



